Abelian Varieties, Jacobians, and Applications

阿贝尔簇、雅可比行列式及其应用

基本信息

  • 批准号:
    1053313
  • 负责人:
  • 金额:
    $ 13.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to work with multiple collaborators to study topics in algebraic geometry, number theory, and string theory related to abelian varieties, curves, and their moduli. The PI will study the intersection homology of the moduli spaces of abelian varieties, investigate the failure of injectivity of the Torelli map for Prym varieties, and endeavor to prove by degeneration that the Schottky-Jung identities characterize Jacobians of curves among all abelian varieties. The PI will attempt to use the geometric properties of Jacobians to approach Coleman's conjecture on the finiteness of the number of Jacobians of a fixed large genus with complex multiplication. By using real-normalized meromorphic differentials, the PI will work on constructing complete subvarieties of the moduli space of curves. The PI will also investigate further mathematical and physical properties of superstring scattering amplitudes an ansatz for which he proposed.Algebraic curves (aka Riemann surfaces) are real two-dimensional surfaces with a metric on them. They arise in many areas of mathematics, and are also fundamental to string theory as worldsheets (trajectories) of strings propagating in space. One can associate to any algebraic curve its Jacobian - it is an algebraic variety (a geometric set of points, such that there is an operation of "adding" two points together), and knowing the Jacobian one can recover the curve uniquely. This project aims to utilize and further study the intricate interplay between the geometry of the curve and of its Jacobian in order to further our understanding of curves and abelian varieties. Progress made on the questions addressed by this project would have implications in mathematics and physics going beyond algebraic and complex geometry, particularly in number theory, integrable systems, partial differential equations, and perturbative string theory.
PI建议与多个合作者一起研究代数几何,数论和与阿贝尔簇,曲线及其模相关的弦理论。PI将研究交换簇的模空间的交同调,研究Prym簇的Torelli映射的内射性的失败,并奋进通过退化证明Schottky-Jung恒等式表征所有交换簇中曲线的Jacobian。PI将尝试使用雅可比矩阵的几何性质来接近科尔曼关于具有复数乘法的固定大亏格的雅可比矩阵的数量的有限性的猜想。通过使用实规格化亚纯微分,PI将致力于构造曲线模空间的完全子簇。PI还将进一步研究超弦散射振幅的数学和物理性质,他提出了一种新的方法。代数曲线(又名黎曼曲面)是真实的二维曲面,其上有一个度量。它们出现在数学的许多领域,也是弦理论的基础,因为它们是弦在空间中传播的世界面(轨迹)。人们可以将其雅可比矩阵与任何代数曲线相关联-它是代数簇(点的几何集合,使得存在将两个点“相加”在一起的操作),并且知道雅可比矩阵可以唯一地恢复曲线。这个项目的目的是利用和进一步研究曲线的几何形状和它的雅可比矩阵之间的复杂的相互作用,以进一步我们的曲线和阿贝尔品种的理解。在这个项目所解决的问题上所取得的进展将对数学和物理学产生影响,超越代数和复几何,特别是在数论,可积系统,偏微分方程和微扰弦理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Grushevsky其他文献

Superstring Scattering Amplitudes in Higher Genus
The Scorza correspondence in genus 3
  • DOI:
    10.1007/s00229-012-0564-z
  • 发表时间:
    2012-06-16
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Samuel Grushevsky;Riccardo Salvati Manni
  • 通讯作者:
    Riccardo Salvati Manni
An explicit upper bound for Weil-Petersson volumes of the moduli spaces of punctured Riemann surfaces
  • DOI:
    10.1007/pl00004496
  • 发表时间:
    2001-09-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Samuel Grushevsky
  • 通讯作者:
    Samuel Grushevsky

Samuel Grushevsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Grushevsky', 18)}}的其他基金

Constructions and Applications of Compactified Moduli
紧缩模的构造与应用
  • 批准号:
    2101631
  • 财政年份:
    2021
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Continuing Grant
8th Ibero-American Congress on Geometry
第八届伊比利亚美洲几何大会
  • 批准号:
    1954579
  • 财政年份:
    2020
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
Moduli Spaces and Moduli Problems
模空间和模问题
  • 批准号:
    1802116
  • 财政年份:
    2018
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
7th Iberoamerican Congress on Geometry
第七届伊比利亚美洲几何大会
  • 批准号:
    1745652
  • 财政年份:
    2018
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
Geometry of Moduli Spaces
模空间的几何
  • 批准号:
    1501265
  • 财政年份:
    2015
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
Moduli spaces and maps between them
模空间和它们之间的映射
  • 批准号:
    1201369
  • 财政年份:
    2012
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Continuing Grant
Abelian Varieties, Jacobians, and Applications
阿贝尔簇、雅可比行列式及其应用
  • 批准号:
    0901086
  • 财政年份:
    2009
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
Geometry of abelian varieties and their moduli
阿贝尔簇的几何及其模
  • 批准号:
    0555867
  • 财政年份:
    2006
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202518
  • 财政年份:
    2002
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
CAREER: Algebraicity and Integral Models of Shimura Varieties
职业:志村品种的代数性和积分模型
  • 批准号:
    2338942
  • 财政年份:
    2024
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Continuing Grant
Quasimaps to Nakajima Varieties
中岛品种的准地图
  • 批准号:
    2401380
  • 财政年份:
    2024
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Continuing Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
Prosodic Event Annotation and Detection in Three Varieties of English
三种英语韵律事件标注与检测
  • 批准号:
    2316030
  • 财政年份:
    2023
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Continuing Grant
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
  • 批准号:
    BB/Y513672/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.16万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了