CAREER: Large Scale Stochastic Control: A Math Programming and Discrete Optimization Lens
职业:大规模随机控制:数学编程和离散优化透镜
基本信息
- 批准号:1054034
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Faculty Early Career Development (CAREER) project seeks to deliver new, approximate approaches for large-scale stochastic control that are easy to implement `out of the box' with little or no expert tuning. At a high level, the research will leverage algorithmic techniques and modes of analysis developed for deterministic optimization problems, in the design of algorithms for large-scale stochastic control. The project consists of two complementary thrusts. The first concerns deriving new math programming formulations for Approximate Dynamic Programming (ADP) via non-standard characterizations of optimal control. ADP algorithms constitute a general approach to large-scale control. These new math programming formulations promise simplicity and robustness, while potentially admitting strong theoretical performance guarantees. The second thrust concerns identifying classes of stochastic control problems wherein one may combat uncertainty with frequent re-optimization and limited `lookahead'. One avenue will consist of developing an abstract modeling framework for a large class of stochastic control problems analogous to that for discrete optimization problems over matroids - an eminently well-studied and relatively tractable class of discrete optimization problems. A second avenue will consist of analyzing dynamic `allocation' or `packing' problems whose deterministic analogues are simple linear programs; such models arise in settings as diverse as revenue management, healthcare and queueing. The goal is to pursue the analysis and development of extremely simple, easy to implement, re-optimization based schemes. The tool facilitating this analysis will consist of a characterization of the dynamics of `basis changes' in such problems.The research agenda above is rooted in real world applications. ADP algorithms have proven to be valuable tools in areas as far ranging as oil exploration to option pricing; the agenda above will potentially bring these schemes closer to being `technologies'. The matroid-like framework mentioned captures features of non-standard processing systems that arise ubiquitously in critical healthcare delivery settings among other applications. The dynamic allocation problems we focus on form the core computational routine in decisions made in online advertising systems, revenue management system and even internet switches, frequently at sub milli-second timescales. As such, the algorithms developed as part of this research will potentially be deployed in several manufacturing, healthcare and e-commerce related settings. In summary, if successful, this research will provide fundamental and practically relevant new tools for stochastic control at both the `generic' and `highly suctured' ends of the problem spectrum.
该学院早期职业发展(CAREER)项目的研究目标旨在为大规模随机控制提供新的近似方法,这些方法很容易实现“开箱即用”,很少或没有专家调整。在高层次上,该研究将利用为确定性优化问题开发的算法技术和分析模式,设计大规模随机控制算法。 该项目包括两个相辅相成的重点。第一个问题是通过最优控制的非标准特征来推导近似动态规划(ADP)的新数学规划公式。ADP算法构成了大规模控制的一般方法。这些新的数学编程公式承诺简单性和鲁棒性,同时可能承认强大的理论性能保证。第二个推力涉及识别类随机控制问题,其中一个可以打击不确定性与频繁的重新优化和有限的“lookahead”。一个途径将包括开发一个抽象的建模框架,一类随机控制问题类似于拟阵上的离散优化问题-一个非常好的研究和相对容易处理的一类离散优化问题。第二条途径将包括分析动态的“分配”或“包装”问题,其确定性的类似物是简单的线性程序;这种模型出现在不同的设置,如收入管理,医疗保健和医疗保健。我们的目标是追求分析和开发非常简单,易于实现,基于重新优化的方案。促进这一分析的工具将包括对这些问题的“基础变化”动态的描述,上述研究议程植根于真实的世界应用。ADP算法已被证明是从石油勘探到期权定价等领域的宝贵工具;上述议程将有可能使这些计划更接近于“技术”。所提到的类matroid框架捕获了在关键的医疗保健提供设置以及其他应用中普遍存在的非标准处理系统的特征。我们关注的动态分配问题形成了在线广告系统,收入管理系统甚至互联网交换机中决策的核心计算程序,通常在毫秒级的时间尺度上。因此,作为本研究的一部分开发的算法将有可能部署在几个制造业,医疗保健和电子商务相关的环境中。总之,如果成功的话,这项研究将提供基本的和实际相关的新工具,随机控制的“通用”和“高度suctured”的问题频谱的两端。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-Optimal A-B Testing
近乎最优的 A-B 测试
- DOI:10.1287/mnsc.2019.3424
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Bhat, Nikhil;Farias, Vivek F.;Moallemi, Ciamac C.;Sinha, Deeksha
- 通讯作者:Sinha, Deeksha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivek Farias其他文献
Vivek Farias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivek Farias', 18)}}的其他基金
An Optimization Framework for Dynamic A-B Testing
动态 A-B 测试的优化框架
- 批准号:
1727239 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
- 批准号:
2239566 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant