CAREER: Theorem, Algorithm, and Applications of Computational Quasiconformal Geometry
职业:计算拟共形几何的定理、算法和应用
基本信息
- 批准号:1054996
- 负责人:
- 金额:$ 41.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quasiconformal geometry has showed its power and flexibility in complex analysis, differential equations, function theory, and topology. Computational quasiconformal geometry focuses on algorithmic study of quasiconformal geometry theory, which links very pure areas of abstract mathematics to concrete engineering applications. This project addresses a number of fundamental engineering problems where quasiconformal geometry can provide a key insight, including building a variational framework of computing the optimal diffeomorphism between surfaces with general topologies, building a theoretically well sound framework to model shape space of surfaces, and building anisotropic models which are widely observed in various areas including wireless sensor networks, computer graphics, and solid mechanics. Expected results include the exploration of computational theorems, new models, and novel geometric algorithms with provable performance guarantee.This interdisciplinary project provides the bridge between quasiconformal geometry and applications in broad engineering fields by identifying important geometric problems in computer graphics, computer vision, geometric modeling, and wireless sensor networks as well as supplying computational theorems and efficient algorithmic solutions based on quasiconformal geometry theory. It is expected that the exploration will reveal key insights of fundamental problems in those fields.
拟共形几何在复分析、微分方程、函数论和拓扑学中显示了它的能力和灵活性。 计算拟共形几何专注于拟共形几何理论的算法研究,将抽象数学的纯领域与具体的工程应用联系起来。 该项目解决了一些基本的工程问题,其中准共形几何可以提供关键的见解,包括建立一个计算具有一般拓扑结构的表面之间的最佳仿射的变分框架,建立一个理论上良好的框架来建模表面的形状空间,以及建立在无线传感器网络,计算机图形学,固体力学。 预期成果包括计算定理的探索,新的模型,和新的几何算法与可证明的性能guarantee.This跨学科的项目提供了桥梁之间的拟共形几何和应用在广泛的工程领域,通过确定重要的几何问题,在计算机图形学,计算机视觉,几何建模,和无线传感器网络,并提供计算定理和有效的算法解决方案的基础上拟共形几何理论。 预计,探索将揭示这些领域的基本问题的关键见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miao Jin其他文献
Infrared-regulated micro device for soft continuum robots
用于软连续体机器人的红外调节微型器件
- DOI:
10.1016/j.sna.2022.114103 - 发表时间:
2022-12 - 期刊:
- 影响因子:0
- 作者:
Runhuai Yang;Anqi Miao;Qianqian Tang;Yangyang Zhang;Miao Jin;Chen Gao;Jialong Chen;Fuzhou Niu;Tingting Luo;Guangli Liu - 通讯作者:
Guangli Liu
Reprogrammable Untethered Actuator for Soft Bio-Inspired Robots
用于软仿生机器人的可重新编程无束缚执行器
- DOI:
10.1002/aisy.202000146 - 发表时间:
2021 - 期刊:
- 影响因子:7.4
- 作者:
Runhuai Yang;Miao Jin;Minmin Jin;Haisheng Qian;Qian Gao;Guoqing Jin;Shiwu Zhang - 通讯作者:
Shiwu Zhang
RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis
RNA 结合蛋白 RZ-1B 和 RZ-1C 在拟南芥发育过程中调节前体 mRNA 剪接和基因表达中发挥关键作用
- DOI:
10.1105/tpc.15.00949 - 发表时间:
2015-12 - 期刊:
- 影响因子:11.6
- 作者:
Wu Zhe;Zhu Danling;Lin Xiaoya;Miao Jin;Gu Lianfeng;Deng Xian;Yang Qian;Sun Kangtai;Zhu Danmeng;Cao Xiaofeng;Tsuge Tomohiko;Dean Caroline;Aoyama Takashi;Gu Hongya;Qu Li-Jia - 通讯作者:
Qu Li-Jia
Layered Double Hydroxides in the Remediation and Prevention of Water Pollution
层状双氢氧化物在水污染修复和预防中的应用
- DOI:
10.1166/eef.2014.1086 - 发表时间:
2014-03 - 期刊:
- 影响因子:0
- 作者:
Xiaodong Lei;Miao Jin;Gareth R. Williams - 通讯作者:
Gareth R. Williams
Hydrological variations dominate long-term ecological dynamics in a large alpine Lake Issyk-Kul, arid Central Asia: Evidence from sediment multi-biomarker analyses
中亚干旱地区大型高山湖泊伊塞克湖的水文变化主导着长期生态动态:来自沉积物多生物标志物分析的证据
- DOI:
10.1016/j.palaeo.2025.113097 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:2.700
- 作者:
Hongliang Zhang;Jinglu Wu;Ru Guo;Miao Jin;Long Ma - 通讯作者:
Long Ma
Miao Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miao Jin', 18)}}的其他基金
NeTS: Small: Distributed In-network Data Storage and Retrieval in 3D Wireless Sensor Networks
NeTS:小型:3D 无线传感器网络中的分布式网内数据存储和检索
- 批准号:
1320931 - 财政年份:2013
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
相似海外基金
SHF: Medium: Neurosymbolic Agents for Formal Theorem-Proving
SHF:介质:用于形式定理证明的神经符号代理
- 批准号:
2403211 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Continuing Grant
Development of Nanoscale Viscoelasticity Measurement Method Based on Fluctuation-Dissipation Theorem
基于涨落耗散定理的纳米级粘弹性测量方法的发展
- 批准号:
23H02021 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Limit theorem for quantum walks interacting with environment
量子行走与环境相互作用的极限定理
- 批准号:
23K03229 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A theorem prover for the correct development of reconfigurable systems
正确开发可重构系统的定理证明者
- 批准号:
23K11048 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Automated Synthetic Geometry Theorem Provers with Deep Learning on Auxiliary Element Construction
通过辅助元素构造的深度学习改进自动综合几何定理证明器
- 批准号:
567916-2022 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
Postgraduate Scholarships - Doctoral
Quantum channel capacity including quantum entanglement and proof of quantum coding theorem
量子信道容量,包括量子纠缠和量子编码定理证明
- 批准号:
22K03406 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated Theorem Proving for Infinite Term Rewriting Systems
无限项重写系统的自动定理证明
- 批准号:
22K11904 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Deductive Failure Reasoner with Stepwise Refinement and Theorem Proving
逐步细化和定理证明的演绎失败推理机的开发
- 批准号:
22K11987 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigations in Algebraic Graph Theory (Babai's Theorem)
代数图论研究(巴拜定理)
- 批准号:
573691-2022 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
University Undergraduate Student Research Awards
Repetitions in Words: Branching Out from Dejean's theorem
文字中的重复:德让定理的分支
- 批准号:
RGPIN-2021-04084 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
Discovery Grants Program - Individual