CAREER: Approximate description of nuclear quantum effects applicable to large systems

职业:适用于大型系统的核量子效应的近似描述

基本信息

项目摘要

Sophya Garashchuk of the University of South Carolina is supported by a CAREER award from the Theory, Models and Computational Methods program in the Chemistry division to develop theoretical and computational methods that help to answer the question, when is it important to take the quantum nature of the nuclei into account when studying chemical processes? Dr. Garashchuk and her research group develop approximate quantum trajectory methods that are scalable to large molecular systems. This methodology is based on the dynamics of an ensemble of quantum trajectories representing a wavefunction. The development of the quantum trajectory framework in imaginary time used for the Boltzmann evolution and eigenstate calculation enable the direct calculation of thermal rate constants. The dominant quantum, inherently non-local, effects are incorporated into trajectory dynamics through a "mean-field"-type approximation to the quantum force, which can be turned off to assess its importance in a chemical process.Theoretical studies of reactivity in large systems contribute to the fundamental understanding of molecular systems in chemistry, physics, and biology and material science. Dr. Garashchuk also engages in many outreach programs that broaden participation of underrepresented groups in the scientific process, attract more young people to research-oriented careers and bring more visibility and appreciation of science in a geographically underrepresented in research (EPSCoR eligible) state of South Carolina. The computer code developed in this project is made widely available to the research community.The project is co-funded by the Office of Cyberinfrastructure.
南卡罗来纳州大学的Sophya Garashchuk获得了化学系理论、模型和计算方法项目的CAREER奖,以开发理论和计算方法,帮助回答这个问题,在研究化学过程时,什么时候考虑原子核的量子性质很重要? Garashchuk博士和她的研究小组开发了可扩展到大型分子系统的近似量子轨道方法。这种方法是基于代表波函数的量子轨迹的合奏动力学。用于玻尔兹曼演化和本征态计算的虚时间量子轨道框架的发展使得能够直接计算热速率常数。主要的量子,固有的非本地,影响被纳入轨道动力学通过“平均场”型近似的量子力,这可以被关闭,以评估其在化学过程中的重要性。在大系统中的反应性的理论研究有助于在化学,物理,生物和材料科学的分子系统的基本理解。 Garashchuk博士还参与了许多推广计划,这些计划扩大了科学过程中代表性不足的群体的参与,吸引更多的年轻人从事研究型职业,并在地理上代表性不足的南卡罗来纳州的研究(符合EPSCoR条件)中带来更多的科学知名度和欣赏。 该项目开发的计算机代码可广泛提供给研究界,该项目由网络基础设施办公室共同资助。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptable Gaussian Bases for Quantum Dynamics of the Nuclei
  • DOI:
    10.1007/978-3-030-67262-1_8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sophya Garashchuk
  • 通讯作者:
    Sophya Garashchuk
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophya Garashchuk其他文献

Bohmian dynamics on subspaces using linearized quantum force.
使用线性化量子力的子空间波姆动力学。
  • DOI:
    10.1063/1.1669385
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Rassolov;Sophya Garashchuk
  • 通讯作者:
    Sophya Garashchuk
Semiclassical Application of the Mo ” ller Operators in Reactive Semiclassical Application of the Mo ” ller Operators in Reactive Scattering Scattering
莫勒算子在反应散射中的半经典应用 莫勒算子在反应散射中的半经典应用 散射
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sophya Garashchuk;John C. Light
  • 通讯作者:
    John C. Light
Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential.
具有动量相关量子势的虚时间内的量子轨迹动力学。
  • DOI:
    10.1063/1.3289728
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sophya Garashchuk
  • 通讯作者:
    Sophya Garashchuk
Semiclassical Nonadiabatic Dynamics with Quantum Trajectories
具有量子轨迹的半经典非绝热动力学
  • DOI:
    10.1103/physreva.71.032511
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    V. Rassolov;Sophya Garashchuk
  • 通讯作者:
    Sophya Garashchuk
Stability Trends in disubstituted Cobaltocenium Based on the Analysis of the Machine Learning Models.
基于机器学习模型分析的二取代钴茂的稳定性趋势。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Shehani T Wetthasinghe;Sophya Garashchuk;V. Rassolov
  • 通讯作者:
    V. Rassolov

Sophya Garashchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophya Garashchuk', 18)}}的其他基金

Quantum Dynamics with Nuclear Quantum Effects: a Hhierarchical Methodology for Large Molecular Systems
具有核量子效应的量子动力学:大分子系统的层次方法论
  • 批准号:
    2308922
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Standard Grant
Molecular dynamics with nuclear quantum effects: merging the quantum and classical domains
具有核量子效应的分子动力学:量子域和经典域的融合
  • 批准号:
    1955768
  • 财政年份:
    2020
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Standard Grant
Molecular dynamics with nuclear quantum effects: bridging classical and quantum regimes
具有核量子效应的分子动力学:连接经典体系和量子体系
  • 批准号:
    1565985
  • 财政年份:
    2016
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Standard Grant

相似海外基金

NAfANE: New Approaches for Approximate Nash Equilibria
NAfANE:近似纳什均衡的新方法
  • 批准号:
    EP/X039862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Research Grant
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
  • 批准号:
    2339596
  • 财政年份:
    2024
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2313039
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Standard Grant
A study of SNN device using serial approximate adders
使用串行近似加法器的SNN装置的研究
  • 批准号:
    23K11034
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approximate Truths: A New Ground for the Pillars of Scientific Realism
近似真理:科学实在论支柱的新基础
  • 批准号:
    2908312
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Studentship
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X022595/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Research Grant
Compilation and Verification of Quantum Software in the Noisy and Approximate Regime
嘈杂近似体系中量子软件的编译与验证
  • 批准号:
    EP/Y004736/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Research Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231706
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231707
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Standard Grant
Approximate Commutators and K-theory
近似换向器和 K 理论
  • 批准号:
    2247968
  • 财政年份:
    2023
  • 资助金额:
    $ 62.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了