CAREER: Novel states of correlated quantum matter in numerical simulations, field theories and natural systems

职业:数值模拟、场论和自然系统中相关量子物质的新状态

基本信息

  • 批准号:
    1056536
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research and education aimed at improving our understanding of non-perturbative aspects of microscopic models of condensed matter physics and their applications to the description of experiments on complex materials.A thorough theoretical understanding of the possible phases that microscopic quantum models of condensed matter physics can realize at zero temperature is an important frontier in fundamental physics. This understanding has vast applications to natural systems, especially relevant to the rich behavior of the large number of complex materials that have been synthesized in laboratories in recent years. Unfortunately, interacting quantum many body problems are often intractable either analytically or numerically without making uncontrolled approximations. An exciting prospect for progress in non-perturbative solutions of quantum many body physics is the powerful combination of numerical simulations of microscopic models in an unbiased way on large lattices (using methods such as quantum Monte Carlo, density matrix renormalization group and exact diagonalization), with field theoretic methods (such as renormalization group, large-N and epsilon−expansions and mean field theory). This award supports research at the interface of all these directions: numerical simulations, field theoretic methods, and analysis of experimental data, to address novel problems in correlated quantum condensed matter physics. Key topics include:1) Quantum criticality in two-dimensional anti-ferromagnets,2) Understanding experiments on frustrated magnetism in complex materials,3) The role of impurities in strongly correlated systems,4) Development of new global update schemes for QMC algorithms,5) Improvement of our understanding of the "sign problem" of QMC and broadening the class of models that are free of this problem.This award supports educational opportunities for undergraduate and graduate students as well as postdoctoral fellows. The PI plans to develop a new course on computational physics for graduate and advanced undergraduate students at the University of Kentucky. He will participate in a program that is aimed at improving high school physics instruction by offering Education majors research opportunities in his group. Working in collaboration with a colleague at the nearby Berea College, where a third of the students are from ethnic minorities, the PI will carry out a number of projects (lectures, colloquia, Physics day activities) that will result in undergraduate student exchange between the two institutions. NON-TECHNICAL SUMMARYThis CAREER award supports theoretical research and education aimed at improving our understanding of quantum mechanical systems with a very large, practically infinite, number of particles and how this knowledge may be used to explain the unusual behavior of complex solid state materials. Quantum physics of many interacting particles forms the basis of our understanding of the properties of complex materials, a growing number of which are being synthesized in laboratories all over the world. The ability to predict the properties of new materials and new materials-related phenomena can play a crucial role in the search for the building blocks of future technologies. Magnetism appears in some complex materials and relates to spontaneously developing self-organized patterns of internal magnetic fields when the temperature is lowered. Using theoretical methods for quantum many body systems, the PI will address both the nature of the magnetism that develops in a variety of complex materials at temperatures close to the absolute zero of temperature and how magnetism can be destroyed by fluctuations of quantum mechanical origin. This project includes a focus on developing computational methods and applying them to enable parallel computers to provide fundamental insight into quantum mechanical systems, particularly the amazing properties and phenomena that involve a virtual universe of electrons in complex materials.This award supports educational opportunities for undergraduate and graduate students as well as postdoctoral fellows. The PI plans to develop a new course on computational physics for graduate and advanced undergraduate students at the University of Kentucky. He will participate in a program that is aimed at improving high school physics instruction by offering Education majors research opportunities in his group. Working in collaboration with a colleague at the nearby Berea College, where a third of the students are from ethnic minorities, the PI will carry out several projects that will result in undergraduate student exchange between the two institutions.
技术总结该职业奖支持理论和计算研究和教育,旨在提高我们对凝聚态物理微观模型的非微扰方面的理解及其在复杂材料实验描述中的应用。对凝聚态物理微观量子模型在零温度下实现的可能相的透彻理论理解是基础物理学的重要前沿。这种理解在自然系统中有着广泛的应用,特别是与近年来在实验室中合成的大量复杂材料的丰富行为有关。 不幸的是,相互作用的量子多体问题往往是棘手的,无论是分析或数值没有不受控制的近似。在量子多体物理学的非微扰解方面取得进展的一个令人兴奋的前景是在大晶格上以无偏的方式对微观模型进行数值模拟(使用诸如量子蒙特卡罗、密度矩阵重整化群和精确对角化等方法)与场论方法(诸如重整化群、大N展开和平均场论)的有力结合。 该奖项支持所有这些方向的接口研究:数值模拟,场论方法和实验数据分析,以解决相关量子凝聚态物理学中的新问题。主要课题包括:1)二维反铁磁体中的量子临界性; 2)理解复杂材料中受抑磁性的实验; 3)杂质在强关联系统中的作用; 4)开发QMC算法的新全局更新方案; 5)提高我们对QMC“符号问题”的理解,并扩大无此问题的模型类别。该奖项支持本科生和研究生以及博士后研究员的教育机会。 PI计划为肯塔基州大学的研究生和高级本科生开发一门新的计算物理课程。 他将参加一个旨在通过在他的小组中提供教育专业研究机会来改善高中物理教学的项目。 PI将与附近Berea学院的同事合作,其中三分之一的学生来自少数民族,PI将开展一些项目(讲座,座谈会,物理日活动),这将导致两个机构之间的本科生交流。非技术总结这个职业奖支持理论研究和教育,旨在提高我们对具有非常大的,几乎无限的粒子数量的量子力学系统的理解,以及如何使用这些知识来解释复杂固态材料的不寻常行为。许多相互作用粒子的量子物理学构成了我们理解复杂材料性质的基础,越来越多的复杂材料正在世界各地的实验室中合成。预测新材料特性和新材料相关现象的能力可以在寻找未来技术的构建模块中发挥至关重要的作用。磁性出现在一些复杂的材料中,与温度降低时自发发展的内部磁场的自组织模式有关。 使用量子多体系统的理论方法,PI将解决在接近绝对零度的温度下在各种复杂材料中发展的磁性的性质,以及磁性如何被量子力学起源的波动破坏。该项目的重点是开发计算方法,并将其应用于使并行计算机能够提供对量子力学系统的基本见解,特别是涉及复杂材料中电子虚拟宇宙的惊人特性和现象。该奖项为本科生和研究生以及博士后研究员提供教育机会。PI计划为肯塔基州大学的研究生和高级本科生开发一门新的计算物理课程。他将参加一个旨在通过在他的小组中提供教育专业研究机会来改善高中物理教学的项目。PI将与附近的Berea学院的一位同事合作,其中三分之一的学生来自少数民族,PI将开展几个项目,这将导致两个机构之间的本科生交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ribhu Kaul其他文献

Ribhu Kaul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ribhu Kaul', 18)}}的其他基金

Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    2312742
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    2026947
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Novel phases of quantum matter in numerical simulations, field theory and materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    1611161
  • 财政年份:
    2016
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
  • 批准号:
    10749672
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
  • 批准号:
    2205973
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
  • 批准号:
    10456380
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
  • 批准号:
    10760186
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
Novel Epigenetic Test for the Treatment and Improvement of Longitudinal Health-Outcomes for Men with Severe Infertility
用于治疗和改善严重不育男性纵向健康结果的新型表观遗传学测试
  • 批准号:
    10760354
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
  • 批准号:
    10782567
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
Novel single-cell mass spectrometry methods to assess the role of intracellular drug concentration and metabolism in antimicrobial treatment failure
评估细胞内药物浓度和代谢在抗菌治疗失败中的作用的新型单细胞质谱方法
  • 批准号:
    10714351
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
  • 批准号:
    10735637
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
A novel role of cholesterol and SR-BI in adipocyte biology
胆固醇和 SR-BI 在脂肪细胞生物学中的新作用
  • 批准号:
    10733720
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了