CAREER: Weighted Inequalities and their Applications to Quasiconformal Maps
职业:加权不等式及其在拟共形映射中的应用
基本信息
- 批准号:1056965
- 负责人:
- 金额:$ 40.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this proposal is the study of interactions between quasiconformal (QC) mappings, geometric analysis (in particular uniform rectifiability), Fourier analysis, and geometric combinatorics. Five problems will be addressed. The unifying method to be employed is an underlying geometric-combinatorial vision which often manifests itself through multiscale analysis (i.e., the analysis of a problem on different scales.) This method will be applied in the contexts of so called "K-QC mappings" (mappings sending an infinitesimal circle/ball to an infinitesimal ellipse/ellipsoid), geometric measure theory (GMT, which analyzes sets and measures on them -these are generalizations of length, area and volume-), harmonic analysis (decomposing a signal into elementary pieces of wavelike character), and potential theory (study of Coulombic potential and related topics.) The mathematical objects involved have found abundant applications in other disciplines, so the problems proposed will advance knowledge in those areas. Fractals (GMT) appear naturally in electrodeposition and Diffusion Limited Aggregation. The internal structure of lungs has a high fractal dimension (to capture more oxygen.) Fourier analysis is often applied in signal and image processing. QC maps are solutions to problems in non-linear elasticity, and have found applications in string theory. Uniform rectifiability appears in minimizers of the Mumford-Shah functional (originally used for image segmentation.) Geometric combinatorics is used for fair division and voting problems in the social sciences, and for phylogenetic trees models in biology. Distance sets are used in industry to study the dimensionality of data sets. The PI will continue preparing students for the Putnam Competition, participating in the Math Club, and mentoring graduate students informally in the context of graduate courses. Fractals and geometric combinatorics are excellent areas for promoting teaching and training of undergraduates and postdocs. The basic notions of multiscale analysis, dimension, combinatorics, etc. are deep enough to convey some flavor of research yet can be successfully explained in an elementary way.
该提案的目的是研究拟共形 (QC) 映射、几何分析(特别是均匀可校正性)、傅立叶分析和几何组合之间的相互作用。将解决五个问题。要采用的统一方法是一种基本的几何组合视觉,它通常通过多尺度分析(即在不同尺度上分析问题)来体现。该方法将应用于所谓的“K-QC映射”(将无穷小圆/球发送到无穷小椭圆/椭圆体的映射)、几何测度理论(GMT,它分析 集及其测量(这些是长度、面积和体积的概括)、调和分析(将信号分解为波状特征的基本片段)和势能理论(库仑势和相关主题的研究)。所涉及的数学对象在其他学科中已经找到了丰富的应用,因此提出的问题将推进这些领域的知识。分形 (GMT) 在电沉积和扩散有限聚集中自然出现。肺部的内部结构具有较高的分形维数(以捕获更多的氧气)。傅里叶分析经常应用于信号和图像处理中。 QC 图是非线性弹性问题的解决方案,并在弦理论中得到了应用。一致可校正性出现在 Mumford-Shah 函数的最小化中(最初用于图像分割)。几何组合学用于社会科学中的公平划分和投票问题以及生物学中的系统发育树模型。距离集在工业中用于研究数据集的维数。 PI 将继续为学生准备普特南竞赛、参加数学俱乐部,并在研究生课程中非正式地指导研究生。分形和几何组合学是促进本科生和博士后教学和培训的绝佳领域。多尺度分析、维度、组合学等的基本概念足够深入,可以传达一些研究的味道,但可以用基本的方式成功地解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ignacio Uriarte-Tuero其他文献
Quasiconformal mappings and singularity of boundary distortion
- DOI:
10.1007/s11854-009-0014-3 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:0.900
- 作者:
Tomi Nieminen;Ignacio Uriarte-Tuero - 通讯作者:
Ignacio Uriarte-Tuero
A emT/em1 theorem for general smooth Calderón-Zygmund operators with doubling weights, and optimal cancellation conditions, II
具有双倍权且具有最优抵消条件的一般光滑 Calderón-Zygmund 算子的 emT/em1 定理,II
- DOI:
10.1016/j.jfa.2023.110139 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:1.600
- 作者:
Michel Alexis;Eric T. Sawyer;Ignacio Uriarte-Tuero - 通讯作者:
Ignacio Uriarte-Tuero
Sharp nonremovability examples for Hölder continuous quasiregular mappings in the plane
- DOI:
10.1007/s11854-009-0022-3 - 发表时间:
2009-09-11 - 期刊:
- 影响因子:0.900
- 作者:
Albert Clop;Ignacio Uriarte-Tuero - 通讯作者:
Ignacio Uriarte-Tuero
The T1 theorem for the Hilbert transform fails when p ≠ 2
- DOI:
10.1007/s11854-025-0373-4 - 发表时间:
2025-07-13 - 期刊:
- 影响因子:0.900
- 作者:
Michel Alexis;Jose Luis Luna-Garcia;Eric T. Sawyer;Ignacio Uriarte-Tuero - 通讯作者:
Ignacio Uriarte-Tuero
Ignacio Uriarte-Tuero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ignacio Uriarte-Tuero', 18)}}的其他基金
Geometric and Combinatorial Viewpoints in Complex and Harmonic Analysis
复数和调和分析中的几何和组合观点
- 批准号:
0901524 - 财政年份:2009
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
相似海外基金
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2022
- 资助金额:
$ 40.33万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2022
- 资助金额:
$ 40.33万 - 项目类别:
Discovery Grants Program - Individual
Weighted isoperimetric inequalities and some applications
加权等周不等式和一些应用
- 批准号:
2525697 - 财政年份:2021
- 资助金额:
$ 40.33万 - 项目类别:
Studentship
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2021
- 资助金额:
$ 40.33万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2021
- 资助金额:
$ 40.33万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2020
- 资助金额:
$ 40.33万 - 项目类别:
Discovery Grants Program - Individual
A new refinement allowing infinite-order degeneration and explosion of weighted classical inequalities and its application to variational problems
允许加权经典不等式的无限阶退化和爆炸的新改进及其在变分问题中的应用
- 批准号:
20K03670 - 财政年份:2020
- 资助金额:
$ 40.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Standard Sparse Estimates and Weighted Inequalities
非标准稀疏估计和加权不等式
- 批准号:
1853112 - 财政年份:2018
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
Non-Standard Sparse Estimates and Weighted Inequalities
非标准稀疏估计和加权不等式
- 批准号:
1800769 - 财政年份:2018
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
Morrey spaces and weighted norm inequalities
莫雷空间和加权范数不等式
- 批准号:
23540187 - 财政年份:2011
- 资助金额:
$ 40.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)