Geometric and Combinatorial Viewpoints in Complex and Harmonic Analysis

复数和调和分析中的几何和组合观点

基本信息

  • 批准号:
    0901524
  • 负责人:
  • 金额:
    $ 10.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).With regards to the intellectual content of the project, the aim of this proposal is the study of interactions between quasiconformal (QC) mappings, geometric analysis (in particular uniform rectifiability), Fourier analysis, and geometric combinatorics. More specifically, the PI will pursue (1) Sharp distortion examples for K-QC maps. (2) Sharp sufficient conditions for removability of sets under bounded quasiregular (QR) maps (related to sharp QC distortion theorems.) (3) Buffon needle probability (Favard length) for Cantor sets (4) Questions involving uniformly rectifiable sets and harmonic measure. (5) Problems on distance sets relating Fourier analysis and geometric combinatorics. The unifying method to be employed is an underlying geometric-combinatorial vision which often manifests itself through multiscale analysis (i.e. the analysis of a problem on different scales.) This method will be applied in the contexts of K-QC mappings (mappings sending an infinitesimal circle/ball to an infinitesimal ellipse/ellipsoid with eccentricity controlled by K), geometric measure theory (GMT, which analyzes sets and measures on them -these are generalizations of length, area and volume-), harmonic analysis (decomposing a signal into elementary pieces of wavelike character), and potential theory (study of Coulombic potential and related topics.) With regards to contextualizing the proposed research within a broader mathematical and scientific framework, note that the mathematical objects involved have found abundant applications in other disciplines, so the problems proposed will advance knowledge in those areas and hence impact other areas of mathematics, science, or engineering. More specifically, fractals (geometric measure theory) appear naturally in electrodeposition and Diffusion Limited Aggregation. The internal structure of lungs has a high fractal dimension (to capture more oxygen.) Fourier analysis is often applied in signal and image processing. Quasiconformal maps are solutions to problems in non-linear elasticity, and have found applications in string theory. Uniform rectifiability appears in minimizers of the Mumford-Shah functional (originally used for image segmentation.) Geometric combinatorics is used for fair division and voting problems in the social sciences, and for phylogenetic trees models in biology. Distance sets are used in industry to study the dimensionality of data sets. In terms of human resource development, the PI will continue preparing students for the Putnam Competition, participating in the Math Club, and mentoring graduate students informally in the context of graduate courses. Fractals and geometric combinatorics are excellent areas for promoting teaching and training of undergraduates and postdocs. The basic notions of multiscale analysis, dimension, combinatorics, etc. are deep enough to convey some flavor of research yet can be successfully explained in an elementary way. Research results will be disseminated via participation in US and international meetings, which will facilitate collaborations with both established and young researchers.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。关于该项目的知识内容,该提案的目的是研究准共形(QC)映射,几何分析(特别是一致可求长性),傅立叶分析和几何组合学之间的相互作用。更具体地说,PI将追踪(1)K-QC图的尖锐失真示例。(2)有界拟正则(QR)映射下集合可去性的尖锐充分条件(与尖锐QC失真定理有关)(3)Cantor集的Buffon针概率(Favard长度)(4)涉及一致可求长集与调和测度的问题(5)有关傅立叶分析和几何组合学的距离集问题。所采用的统一方法是一种潜在的几何组合视觉,它通常通过多尺度分析(即在不同尺度上分析一个问题)来体现。这种方法将被应用于K-QC映射的上下文中(mappings sending an infinitesimal circle/ball to an infinitesimal ellipse/ellipsoid with eccentricity controlled by K),几何测度论(GMT,分析集合和度量-这些是长度,面积和体积的概括-),谐波分析(将信号分解为具有波动特征的基本片段)和势能理论(研究库仑势和相关主题)。 关于在更广泛的数学和科学框架内将拟议的研究置于背景中,请注意所涉及的数学对象在其他学科中有大量的应用,因此提出的问题将促进这些领域的知识,从而影响数学,科学或工程的其他领域。更具体地说,分形(几何测量理论)自然出现在电沉积和扩散限制聚集。肺的内部结构具有较高的分形维数(以捕获更多的氧气)。傅立叶分析经常应用于信号和图像处理。拟共形映射是非线性弹性问题的解,并在弦理论中得到应用。均匀可校正性出现在Mumford-Shah泛函的最小化器中(最初用于图像分割)。几何组合学用于社会科学中的公平分配和投票问题,以及生物学中的系统发育树模型。距离集在工业中用于研究数据集的维数。在人力资源开发方面,PI将继续为学生准备普特南竞赛,参加数学俱乐部,并在研究生课程中非正式地指导研究生。分形和几何组合学是促进本科生和博士后教学和培养的优秀领域。多尺度分析、维数、组合学等基本概念足够深入,可以传达一些研究的味道,但可以用基本的方式成功地解释。研究成果将通过参加美国和国际会议进行传播,这将促进与现有和年轻研究人员的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ignacio Uriarte-Tuero其他文献

Quasiconformal mappings and singularity of boundary distortion
  • DOI:
    10.1007/s11854-009-0014-3
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Tomi Nieminen;Ignacio Uriarte-Tuero
  • 通讯作者:
    Ignacio Uriarte-Tuero
A emT/em1 theorem for general smooth Calderón-Zygmund operators with doubling weights, and optimal cancellation conditions, II
具有双倍权且具有最优抵消条件的一般光滑 Calderón-Zygmund 算子的 emT/em1 定理,II
  • DOI:
    10.1016/j.jfa.2023.110139
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Michel Alexis;Eric T. Sawyer;Ignacio Uriarte-Tuero
  • 通讯作者:
    Ignacio Uriarte-Tuero
Sharp nonremovability examples for Hölder continuous quasiregular mappings in the plane
  • DOI:
    10.1007/s11854-009-0022-3
  • 发表时间:
    2009-09-11
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Albert Clop;Ignacio Uriarte-Tuero
  • 通讯作者:
    Ignacio Uriarte-Tuero
The T1 theorem for the Hilbert transform fails when p ≠ 2
  • DOI:
    10.1007/s11854-025-0373-4
  • 发表时间:
    2025-07-13
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Michel Alexis;Jose Luis Luna-Garcia;Eric T. Sawyer;Ignacio Uriarte-Tuero
  • 通讯作者:
    Ignacio Uriarte-Tuero

Ignacio Uriarte-Tuero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ignacio Uriarte-Tuero', 18)}}的其他基金

CAREER: Weighted Inequalities and their Applications to Quasiconformal Maps
职业:加权不等式及其在拟共形映射中的应用
  • 批准号:
    1056965
  • 财政年份:
    2011
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Continuing Grant

相似海外基金

Combinatorial Biosynthetic Pathway Engineering
组合生物合成途径工程
  • 批准号:
    EP/X039587/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Research Grant
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
  • 批准号:
    23K26368
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Continuing Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Continuing Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了