Collaborative Research: Empirical Analyses of Committee Voting

合作研究:委员会投票的实证分析

基本信息

  • 批准号:
    1061266
  • 负责人:
  • 金额:
    $ 16.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Empirical Analyses of Committee VotingResearchers: Matias Iaryczower (Princeton), Matthew Shum (Caltech)Some of the most important decisions in societies are made in committees voting bodies with a small number of members). In the US, the Supreme Court, the House of Representatives, and municipal school boards are examples of committees who make decisions with far-reaching consequences for the public. The overarching goal of this proposal is to develop an empirical framework for understanding how committees "work": how the disparate preferences and know-how of its members are aggregated into a collective outcome in different institutional environments.To do this, we develop a new statistical and econometric model for analyzing decision-making in committees, in which members' actions depend not only on their preferences, but also on their information. This model is based on the theoretical literature of strategic voting with incomplete information, which has become the preferred approach to modeling committee voting in frontier research in political economy. Using data on the voting records of committee members in real-world committees, we estimate the model parameters, which correspond to the preferences (biases) as well as information of each committee member. Disentangling bias and quality of information in turn allows us to measure the value of information in the committee, to measure the effectiveness of committee decision-making, and to compute counterfactual simulations to assess how differently committee decisions would have been under alternative voting rules or committee compositions.This proposal contains four projects which illustrate the power of our analytical framework in several important real-world institutions. The first project focuses on decisions in the United States Supreme Court. In this context, we consider whether case-specific information have enough power to overturn the prior biases and ideological considerations of the justices. The second and third projects focus on decision-making in state supreme courts, and address questions regarding differences in bias and quality of information of appointed and elected justices (bureaucrats and politicians), and also the effects of campaign financing on elected judges' voting behavior. In the fourth project, we analyze voting in theUS congress during the founding fathers period (Congresses 1 to 17).Our work has important implications for the analysis of policy and effective design of voting institutions. Our empirical framework allows us to quantify (with minimal data requirements) the effectiveness of committee decision-making in different institutional settings. This in turn allows both an evaluation of real-world committees and, via counterfactual simulations, to assess whether alternative institutional arrangements (such as majority vs. unanimity rules, or limits on campaign contributions) could lead to better decisions. The computer code and data files generated by our research can be applied readily by other researchers to analyze committee voting in myriads of other settings.
委员会投票的实证分析研究人员:马蒂亚斯Iaryczower(普林斯顿大学),马修Shum(加州理工学院)社会中一些最重要的决定是在委员会投票机构与少数成员)。在美国,最高法院、众议院和市政学校董事会都是委员会做出对公众有深远影响的决定的例子。该提案的总体目标是建立一个经验框架,以了解委员会如何“工作”:委员会成员的不同偏好和专业知识是如何在不同的制度环境中聚集成一个集体结果的。为了做到这一点,我们开发了一个新的统计和计量经济学模型来分析委员会的决策,在这个模型中,成员的行动不仅取决于他们的偏好,也取决于他们的信息该模型基于不完全信息下的策略性投票理论文献,该理论文献已成为政治经济学前沿研究中建模委员会投票的首选方法。使用真实委员会中委员会成员的投票记录数据,我们估计模型参数,这些参数对应于每个委员会成员的偏好(偏差)以及信息。解开偏见和信息的质量反过来又使我们能够衡量信息的价值在委员会,以衡量委员会决策的有效性,并计算反事实模拟,以评估如何不同的委员会的决定会在替代的投票规则或委员会compositions.This提案包含四个项目,说明了我们的分析框架在几个重要的现实世界的机构的力量。第一个项目侧重于美国最高法院的裁决。 在这种情况下,我们考虑是否有足够的力量来推翻大法官的偏见和意识形态的考虑。第二个和第三个项目的重点是州最高法院的决策,并解决有关任命和当选法官(官僚和政治家)的偏见和信息质量的差异,以及竞选资金对当选法官投票行为的影响。在第四个项目中,我们分析了美国建国初期(第1至17届国会)的投票制度,我们的工作对政策分析和有效设计投票制度具有重要意义。我们的实证框架使我们能够量化(以最小的数据要求)在不同的机构设置委员会决策的有效性。这反过来又允许对现实世界的委员会进行评估,并通过反事实模拟来评估替代性制度安排(如多数与非多数规则,或限制竞选捐款)是否可以导致更好的决策。 我们的研究所产生的计算机代码和数据文件可以很容易地被其他研究人员应用于分析无数其他设置中的委员会投票。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Shum其他文献

Combining Choice and Response Time Data: A Drift-Diffusion Model of Mobile Advertisements
结合选择和响应时间数据:移动广告的漂移扩散模型
  • DOI:
    10.2139/ssrn.3289386
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Chiong;Matthew Shum;Ryan Webb;Richard Y. Chen
  • 通讯作者:
    Richard Y. Chen
Estimation of jaw-opening forces, energy expenditure and jaw-opening patterns in adults
  • DOI:
    10.1016/j.archoralbio.2020.104836
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaomei Xu;Matthew Shum;Alina Ting;Li Mei;Guangzhao Guan
  • 通讯作者:
    Guangzhao Guan
Nonparametric learning rules from bandit experiments: The eyes have it!
强盗实验中的非参数学习规则:眼睛有它!
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingyao Hu;Yutaka Kayaba;Matthew Shum
  • 通讯作者:
    Matthew Shum
A Structural Neural Autopilot Analysis of Social Media Use Around the Pandemic Lockdown
大流行封锁期间社交媒体使用的结构神经自动驾驶仪分析
  • DOI:
    10.2139/ssrn.4757025
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Xin;Lawrence J. Jin;Jessica Fong;Matthew Shum;Colin F. Camerer
  • 通讯作者:
    Colin F. Camerer
Is pharmaceutical detailing informative? Evidence from contraindicated drug prescriptions

Matthew Shum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Shum', 18)}}的其他基金

Collaborative Research: Emperical Analyses of Competitive Bidding
合作研究:竞争性招标的实证分析
  • 批准号:
    0003352
  • 财政年份:
    2000
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: An Empirical Blueprint for the Gravitational-Wave Background
合作研究:引力波背景的经验蓝图
  • 批准号:
    2414468
  • 财政年份:
    2024
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Impacts of Automated Vehicles on Traffic Flow Using Empirical Data
合作研究:利用经验数据了解自动驾驶汽车对交通流量的影响
  • 批准号:
    2401476
  • 财政年份:
    2023
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
  • 批准号:
    2307116
  • 财政年份:
    2023
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
  • 批准号:
    2307117
  • 财政年份:
    2023
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
  • 批准号:
    2152950
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
  • 批准号:
    2152966
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
  • 批准号:
    2213579
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213757
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
  • 批准号:
    2213580
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213756
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了