Collaborative Research: ABI Development: Algorithms and Software for Discovery of Non-sequential Protein Structure Similarities

合作研究:ABI 开发:用于发现非序列蛋白质结构相似性的算法和软件

基本信息

  • 批准号:
    1062328
  • 负责人:
  • 金额:
    $ 40.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-05-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

The University of Illinois at Chicago and Princeton University are awarded collaborative grants to develop efficient and scalable computational methods for comparing protein structures. Protein sequences and structures are being determined at an increasingly rapid rate. To date, there are more than 1000 sequenced genomes with several thousand more in progress and over 50,000 three-dimensional structures in the Protein Data Bank. Whether considering proteins at the level of sequence or structure, comparing or aligning two proteins is the fundamental technique for uncovering principles of protein structure, function and evolution. While the vast majority of research efforts have focused on sequence comparisons, since protein structures are generally better conserved than protein sequences, identifying structural similarity between proteins can yield valuable clues to protein function and can be used to classify proteins, analyze their evolutionary histories and even to help predict protein interactions. Though considerable advances have been made in recent years in comparing protein structures, key difficulties include detecting shared, conserved structures between proteins where the individual structural elements are in different orderings on the two sequences. This project will develop innovative methods to enable discovery of sequence-order-independent substructure similarity with a long-term goal of doing a large-scale comparison over all protein structures. The research team will formulate precise theoretical problems, design efficient algorithms for them and implement and test the resulting algorithms to test accuracy and efficiency issues. The final software for comparing protein structures will be released to the scientific community and is expected to provide a significant and demonstrable impact on further research in structural bioinformatics.Scientifically, the methodologies to be developed for substructure comparison are general and will have broader impacts beyond structural proteomics and bioinformatics. For example, a biomedical application of the proposed project lies in guiding protein engineering and rational drug design via a systematic identification of all such substructures and their underlying sequences. The project will involve undergraduates and under-represented minority (URM) groups in active research. A central component is to engage URM undergraduate students from the urban UIC campus and involve them in summer research at Princeton with the goal of possible recruitment into Princeton's graduate program in Quantitative and Computational Biology. Additionally, the PIs are planning course and curriculum development, dissemination of research, mentoring of undergraduate and graduate students, outreach and community involvement.The outcomes of the project will be made available through the websites of all the investigators: http://www.cs.uic.edu/~dasgupta http://gila.bioengr.uic.edu/lab http://www.cs.princeton.edu/~mona
伊利诺伊大学芝加哥分校和普林斯顿大学获得了合作资助,以开发有效和可扩展的计算方法来比较蛋白质结构。蛋白质的序列和结构正以越来越快的速度被确定。迄今为止,在蛋白质数据库中有超过1000个基因组测序,还有数千个正在进行中,超过50,000个三维结构。无论是从序列水平还是结构水平考虑蛋白质,比较或比对两种蛋白质都是揭示蛋白质结构、功能和进化原理的基本技术。虽然绝大多数的研究工作都集中在序列比较上,但由于蛋白质结构通常比蛋白质序列更保守,识别蛋白质之间的结构相似性可以为蛋白质功能提供有价值的线索,并可用于对蛋白质进行分类,分析它们的进化历史,甚至帮助预测蛋白质的相互作用。尽管近年来在比较蛋白质结构方面取得了相当大的进展,但关键的困难包括检测蛋白质之间的共享保守结构,其中单个结构元件在两个序列上的顺序不同。该项目将开发创新的方法,以发现与序列顺序无关的亚结构相似性,其长期目标是对所有蛋白质结构进行大规模比较。研究团队将制定精确的理论问题,为其设计高效的算法,并实施和测试得到的算法,以测试准确性和效率问题。用于比较蛋白质结构的最终软件将发布给科学界,预计将对结构生物信息学的进一步研究产生重大而明显的影响。从科学上讲,用于子结构比较的方法是通用的,将具有比结构蛋白质组学和生物信息学更广泛的影响。例如,拟议项目的生物医学应用在于通过系统地识别所有这些亚结构及其潜在序列来指导蛋白质工程和合理的药物设计。该项目将涉及本科生和代表性不足的少数群体(URM)积极研究。其中一个核心部分是招收来自UIC城市校区的URM本科生,并让他们参与普林斯顿大学的夏季研究,目标是可能被普林斯顿大学的定量和计算生物学研究生项目录取。此外,政策顾问还负责规划课程和课程发展、传播研究成果、指导本科生和研究生、外联和社区参与。该项目的结果将通过所有研究人员的网站:http://www.cs.uic.edu/~dasgupta http://gila.bioengr.uic.edu/lab http://www.cs.princeton.edu/~mona公布

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhaskar DasGupta其他文献

Opportunity Cost Algorithms for Combinatorial Auctions
组合拍卖的机会成本算法
Polynomial Time Approximation Scheme for Symmetric Rectilinear Steiner Arborescence Problem
  • DOI:
    10.1023/a:1012730702524
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Xiuzhen Cheng;Bhaskar DasGupta;Bing Lu
  • 通讯作者:
    Bing Lu
Activity Theory : Legacies , Standpoints , and Hopes : A discussion of Andy Blunden ’ s An Interdisciplinary Theory of Activity
活动理论:遗产、立场和希望:对安迪·布伦登的跨学科活动理论的讨论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Rumbaugh;James E. King;Michael J Beran;David A. Washburn;K. Gould;Nate Kornell;D. J. Scaturo;Brian D. Haig;R. Schvaneveldt;Benjamin K. Barton;Thomas A. Ulrich;Peter Robinson;Matthew J. Schuelke;Eric Anthony Day;Henry W. Chase;E. Carayannis;Timothy M. Flemming;Michael C. Mitchelmore;Paul White;Erin M. Brodhagen;M. Gettinger;E. Usher;David B. Morris;Janna Wardman;J. R. Nelson;R. Low;P. Jin;Betty K. Tuller;Noël Nguyen;Fons Wijnhoven;Gerhard Weber;C. Rigg;K. Trehan;Michael L. Jones;Aytac Gogus;N. Seel;Som Naidu;Danny R. Bedgood;Christina M. Steiner;Birgit Marte;Jürgen Heller;Dietrich Albert;A. Podolskiy;Lorna Uden;Andrew J. Martin;C. Balkenius;B. Johansson;Karen L. Hollis;David A. Cook;J. Bloomberg;Otmar Bock;R. Clariana;Simon Hooper;Amy B. Adcock;R. Van Eck;Chin;Chung;M. Burtsev;J. S. Nairne;Marco Vasconcelos;Josefa N. S. Pandeirada;Liu Yang;Jaime Carbonell;M. Dornisch;G. Manaster;Katie Davis;Marcia L. Conner;Dolores Fidishun;Mark Tennant;J. Gurlitt;J. Fletcher;S. Cerri;G. Veletsianos;P. Wickman;Jason D. Baker;M. Gläser;Soumaya Chaffar;C. Frasson;Dirk Hermans;Heleen Vandromme;Els Joos;Leily Ziglari;Benjamin D. Nye;Barry G. Silverman;E. Marchione;M. Salgado;Mimi Bong;Joaquin A. Anguera;Jin Bo;R. D. Seidler;K. Cennamo;V. Munde;C. Vlaskamp;W. Ruijssenaars;Bea Maes;H. Nakken;John Biggs;C. Tang;Vicki S. Napper;Carolyn E. Schwartz;Zhanna Reznikova;Ben Seymour;W. Yoshida;Ray Dolan;M. Speekenbrink;C. Breitenstein;Stefan Knecht;M. Guarini;Royal Skousen;Steve Chandler;Wendelin M. Küpers;U. Goswami;P. Blenkiron;A. Antonietti;Robert Samuel Matthews;Charlotte Hua Liu;Geoffrey Hall;Mireille Bétrancourt;Sandra Berney;Cathrine Hasse;Nigel Stepp;Martin Volker Butz;Giovanni Pezzulo;Filipo Studzinski Perotto;S. Cooray;A. Bakala;K. Purandare;Anusha Wijeratne;Jeff C. Marshall;Soh;Andrew Byrne;J. Campbell;Umar Syed;Klaus Nielsen;R. Feltman;Andrew J. Elliot;N. Entwistle;Bhaskar DasGupta;Derong Liu;Henning Fernau;Yu;Janusz Wojtusiak;Damian Grace;John M. Keller;Michael J. Ford;Nathalie Muller Mirza;Michael Jackson;Dana LaCourse Munteanu;Jason Arndt;Eva L. Baker;Fabio Alivernini;F. Tonneau;J. Jozefowiez;D. Sagi;Y. Adini;M. Tsodyks;Melissa L. Allen;Friedrich T. Sommer;Vivienne B. Carr;Kristina Wieland;Leslie C. Novosel;D. Deshler;Daniel T. Pollitt;Carrie Mark;Belinda B. Mitchell;K. Wolf;Notger G. Müller;M. Haselgrove;L. Gregory Appelbaum;Joseph A. Harris;Ulrike Halsband;E. Davelaar;Andrew Finch;W. Timothy Coombs;Annie Lang;O. Podolskiy;Stephen Billett;Joseph Psotka;Åsa Hammar;J. Worthen;R. Reed Hunt;Margaret MacDougall;É. Le Bourg;Tiago V. Maia
  • 通讯作者:
    Tiago V. Maia
On approximate learning by multi-layered feedforward circuits
  • DOI:
    10.1016/j.tcs.2005.09.008
  • 发表时间:
    2005-12-02
  • 期刊:
  • 影响因子:
  • 作者:
    Bhaskar DasGupta;Barbara Hammer
  • 通讯作者:
    Barbara Hammer
Online real-time preemptive scheduling of jobs with deadlines
在线实时抢先调度有截止日期的作业

Bhaskar DasGupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhaskar DasGupta', 18)}}的其他基金

III: Small: Collaborative Research: Network Analysis and Anomaly Detection via Global Curvatures
III:小型:协作研究:通过全局曲率进行网络分析和异常检测
  • 批准号:
    1814931
  • 财政年份:
    2018
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
ICES: Small: Collaborative Research: Dynamic Parking Assignment Games
ICES:小型:协作研究:动态停车分配游戏
  • 批准号:
    1216096
  • 财政年份:
    2012
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
III: CCF: Medium: Collaborative Research: Combinatorial Analysis of Biological and Social Networks
III:CCF:媒介:协作研究:生物和社交网络的组合分析
  • 批准号:
    1160995
  • 财政年份:
    2012
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Algorithms for Computational Problems in Bioinformatics Via Combinatorial and Geometric Techniques
职业:通过组合和几何技术解决生物信息学计算问题的有效算法
  • 批准号:
    0346973
  • 财政年份:
    2004
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: Piecewise Linear Hybrid Systems
合作研究:分段线性混合系统
  • 批准号:
    0206795
  • 财政年份:
    2002
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient Combinatorial Algorithms for Several Tiling, Packing and Covering Problems with Rectangles and Hyper-Rectangles
协作研究:针对矩形和超矩形的多个平铺、填充和覆盖问题的高效组合算法
  • 批准号:
    0208749
  • 财政年份:
    2002
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
  • 批准号:
    0296041
  • 财政年份:
    2001
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
  • 批准号:
    9800086
  • 财政年份:
    1998
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
  • 批准号:
    1854685
  • 财政年份:
    2018
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
  • 批准号:
    1756250
  • 财政年份:
    2018
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
  • 批准号:
    1759472
  • 财政年份:
    2018
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了