CAREER: Efficient Algorithms for Computational Problems in Bioinformatics Via Combinatorial and Geometric Techniques

职业:通过组合和几何技术解决生物信息学计算问题的有效算法

基本信息

  • 批准号:
    0346973
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-04-15 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

This project applies combinatorial and geometric optimization techniques to design efficient algorithms for three important research areas in bioinformatics: (1) substructure similarity identification; (2) inverse protein folding; and (3) test set problems. Efficient algorithms are designed by using combinatorial methods such as the information content heuristic approach, local-ratio and multi-phase techniques, slice-and-dice methods, and a linear programming approach via primal-dual schema. Judicious combinations of existing and novel combinatorial techniques coupled with collaborations with other computational biologists and effective interactions with and feedback from the biologists and bioengineers makes the designed algorithms practical and biologically relevant.The technical impact of this work will be in designing efficient algorithms for computationally challenging problems in the abovementioned areas via combinatorial/geometric techniques. This will provide the biologists with better algorithms and software for several applications such as recognizing remote evolutionary relationships at the level of protein fragments via discovering similar substructures from different proteins and efficiently detecting unknown pathogens via string barcoding. The broader impacts of this proposal will be integrating research and teaching, effective dissemination via publications, web and other means, and improving diversity in research and education.
该项目应用组合和几何优化技术为生物信息学中的三个重要研究领域设计了有效的算法:(1)亚结构相似性识别;(2)蛋白质反向折叠;(3)测试集问题。利用信息量启发式方法、局部比率和多阶段技术、切片和骰子方法以及基于原始-对偶模式的线性规划方法等组合方法设计了高效的算法。现有的和新的组合技术的合理组合,加上与其他计算生物学家的合作,以及与生物学家和生物工程师的有效交互和反馈,使所设计的算法具有实用性和生物学相关性。这项工作的技术影响将是通过组合/几何技术为上述领域的计算挑战问题设计高效的算法。这将为生物学家提供更好的算法和软件,用于多种应用,如通过从不同蛋白质中发现相似的亚结构来识别蛋白质片段水平上的远程进化关系,以及通过字符串条形码有效地检测未知病原体。这一建议的更广泛影响将是将研究和教学结合起来,通过出版物、网络和其他手段有效传播,并改善研究和教育的多样性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhaskar DasGupta其他文献

Opportunity Cost Algorithms for Combinatorial Auctions
组合拍卖的机会成本算法
Polynomial Time Approximation Scheme for Symmetric Rectilinear Steiner Arborescence Problem
  • DOI:
    10.1023/a:1012730702524
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Xiuzhen Cheng;Bhaskar DasGupta;Bing Lu
  • 通讯作者:
    Bing Lu
Activity Theory : Legacies , Standpoints , and Hopes : A discussion of Andy Blunden ’ s An Interdisciplinary Theory of Activity
活动理论:遗产、立场和希望:对安迪·布伦登的跨学科活动理论的讨论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Rumbaugh;James E. King;Michael J Beran;David A. Washburn;K. Gould;Nate Kornell;D. J. Scaturo;Brian D. Haig;R. Schvaneveldt;Benjamin K. Barton;Thomas A. Ulrich;Peter Robinson;Matthew J. Schuelke;Eric Anthony Day;Henry W. Chase;E. Carayannis;Timothy M. Flemming;Michael C. Mitchelmore;Paul White;Erin M. Brodhagen;M. Gettinger;E. Usher;David B. Morris;Janna Wardman;J. R. Nelson;R. Low;P. Jin;Betty K. Tuller;Noël Nguyen;Fons Wijnhoven;Gerhard Weber;C. Rigg;K. Trehan;Michael L. Jones;Aytac Gogus;N. Seel;Som Naidu;Danny R. Bedgood;Christina M. Steiner;Birgit Marte;Jürgen Heller;Dietrich Albert;A. Podolskiy;Lorna Uden;Andrew J. Martin;C. Balkenius;B. Johansson;Karen L. Hollis;David A. Cook;J. Bloomberg;Otmar Bock;R. Clariana;Simon Hooper;Amy B. Adcock;R. Van Eck;Chin;Chung;M. Burtsev;J. S. Nairne;Marco Vasconcelos;Josefa N. S. Pandeirada;Liu Yang;Jaime Carbonell;M. Dornisch;G. Manaster;Katie Davis;Marcia L. Conner;Dolores Fidishun;Mark Tennant;J. Gurlitt;J. Fletcher;S. Cerri;G. Veletsianos;P. Wickman;Jason D. Baker;M. Gläser;Soumaya Chaffar;C. Frasson;Dirk Hermans;Heleen Vandromme;Els Joos;Leily Ziglari;Benjamin D. Nye;Barry G. Silverman;E. Marchione;M. Salgado;Mimi Bong;Joaquin A. Anguera;Jin Bo;R. D. Seidler;K. Cennamo;V. Munde;C. Vlaskamp;W. Ruijssenaars;Bea Maes;H. Nakken;John Biggs;C. Tang;Vicki S. Napper;Carolyn E. Schwartz;Zhanna Reznikova;Ben Seymour;W. Yoshida;Ray Dolan;M. Speekenbrink;C. Breitenstein;Stefan Knecht;M. Guarini;Royal Skousen;Steve Chandler;Wendelin M. Küpers;U. Goswami;P. Blenkiron;A. Antonietti;Robert Samuel Matthews;Charlotte Hua Liu;Geoffrey Hall;Mireille Bétrancourt;Sandra Berney;Cathrine Hasse;Nigel Stepp;Martin Volker Butz;Giovanni Pezzulo;Filipo Studzinski Perotto;S. Cooray;A. Bakala;K. Purandare;Anusha Wijeratne;Jeff C. Marshall;Soh;Andrew Byrne;J. Campbell;Umar Syed;Klaus Nielsen;R. Feltman;Andrew J. Elliot;N. Entwistle;Bhaskar DasGupta;Derong Liu;Henning Fernau;Yu;Janusz Wojtusiak;Damian Grace;John M. Keller;Michael J. Ford;Nathalie Muller Mirza;Michael Jackson;Dana LaCourse Munteanu;Jason Arndt;Eva L. Baker;Fabio Alivernini;F. Tonneau;J. Jozefowiez;D. Sagi;Y. Adini;M. Tsodyks;Melissa L. Allen;Friedrich T. Sommer;Vivienne B. Carr;Kristina Wieland;Leslie C. Novosel;D. Deshler;Daniel T. Pollitt;Carrie Mark;Belinda B. Mitchell;K. Wolf;Notger G. Müller;M. Haselgrove;L. Gregory Appelbaum;Joseph A. Harris;Ulrike Halsband;E. Davelaar;Andrew Finch;W. Timothy Coombs;Annie Lang;O. Podolskiy;Stephen Billett;Joseph Psotka;Åsa Hammar;J. Worthen;R. Reed Hunt;Margaret MacDougall;É. Le Bourg;Tiago V. Maia
  • 通讯作者:
    Tiago V. Maia
On approximate learning by multi-layered feedforward circuits
  • DOI:
    10.1016/j.tcs.2005.09.008
  • 发表时间:
    2005-12-02
  • 期刊:
  • 影响因子:
  • 作者:
    Bhaskar DasGupta;Barbara Hammer
  • 通讯作者:
    Barbara Hammer
Online real-time preemptive scheduling of jobs with deadlines
在线实时抢先调度有截止日期的作业

Bhaskar DasGupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhaskar DasGupta', 18)}}的其他基金

III: Small: Collaborative Research: Network Analysis and Anomaly Detection via Global Curvatures
III:小型:协作研究:通过全局曲率进行网络分析和异常检测
  • 批准号:
    1814931
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
ICES: Small: Collaborative Research: Dynamic Parking Assignment Games
ICES:小型:协作研究:动态停车分配游戏
  • 批准号:
    1216096
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
III: CCF: Medium: Collaborative Research: Combinatorial Analysis of Biological and Social Networks
III:CCF:媒介:协作研究:生物和社交网络的组合分析
  • 批准号:
    1160995
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: Algorithms and Software for Discovery of Non-sequential Protein Structure Similarities
合作研究:ABI 开发:用于发现非序列蛋白质结构相似性的算法和软件
  • 批准号:
    1062328
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Piecewise Linear Hybrid Systems
合作研究:分段线性混合系统
  • 批准号:
    0206795
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient Combinatorial Algorithms for Several Tiling, Packing and Covering Problems with Rectangles and Hyper-Rectangles
协作研究:针对矩形和超矩形的多个平铺、填充和覆盖问题的高效组合算法
  • 批准号:
    0208749
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
  • 批准号:
    0296041
  • 财政年份:
    2001
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
  • 批准号:
    9800086
  • 财政年份:
    1998
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
  • 批准号:
    2337832
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
  • 批准号:
    2239046
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
  • 批准号:
    2143625
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
  • 批准号:
    2143904
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Genomic Data Science: From Informational Limits to Efficient Algorithms
职业:基因组数据科学:从信息限制到高效算法
  • 批准号:
    2046991
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
  • 批准号:
    2045068
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Fine-grained Algorithms
职业:高效的细粒度算法
  • 批准号:
    2223282
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Accurate Local Time-Stepping Algorithms for Multiscale Multiphysics Systems
职业:多尺度多物理系统的高效、准确的局部时间步进算法
  • 批准号:
    2041884
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了