III: CCF: Medium: Collaborative Research: Combinatorial Analysis of Biological and Social Networks
III:CCF:媒介:协作研究:生物和社交网络的组合分析
基本信息
- 批准号:1160995
- 负责人:
- 金额:$ 35.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this collaborative interdisciplinary proposal involving a researcher at the University of Illinois at Chicago (UIC) and one at the Pennsylvania State University (Penn State), the investigators will design and apply novel algorithmic tools to explore several fundamental graph-theoretic problems that have significant applications in biological and social interaction networks. The research problems addressed in the proposal can be broadly classified into graph partitioning type of problems and graph sparsification type of problems. For example, one such problem in the context of social interaction networks is to partition the nodes into so-called "communities of statistically significant interactions" to study the behavioral patterns of a group of individuals in a society. The PIs will formulate precise computational problems, study their properties, use novel algorithmic tools to design efficient algorithms, and implement the resulting algorithms to test their accuracy and efficiency. The proposed research will leverage further development of novel combinatorial tools previously developed by the PIs, in addition to developing new techniques, to design efficient algorithms for complex optimization problems. The algorithms developed in the course of this project will be implemented for validation on simulated and real data, and will lead to open-source software for the life science and social science communities.On a broader level, since this proposal deals with fundamental combinatorial optimization problems that arise in diverse scientific fields, the proposed research will have a strong impact on research areas beyond the primary research area, such as in stability analysis of computer networks and in social network visualization. A central component of the proposal is the creation of meaningful educational activities that leverage the proposed interdisciplinary research and build on the PIs' substantial past experience in teaching, mentoring and outreach and on the diverse communities in Chicago . Additionally, the PIs plan to integrate research and education via course and curriculum development, involvement of undergraduates, minorities and under-represented groups, effective dissemination of research, mentoring of undergraduate and graduate students, outreach and community involvement, and promoting diversity in research and educational activities.The outcomes of the project will be made freely available through the following websites of the investigators and their labs: http://www.cs.uic.edu/~dasgupta; http://www.cs.uic.edu/~dasgupta/professional/algo-lab.html; and http://www.phys.psu.edu/~ralbert.
在这个合作的跨学科的建议,涉及一名研究人员在伊利诺伊大学芝加哥(UIC)和一个在宾夕法尼亚州州立大学(宾夕法尼亚州立大学),研究人员将设计和应用新的算法工具,以探索几个基本的图论问题,在生物和社会互动网络中有重要的应用。在该提案中解决的研究问题可以大致分为图划分类型的问题和图稀疏化类型的问题。例如,在社会交互网络的背景下,一个这样的问题是将节点划分为所谓的“统计上显著交互的社区”,以研究社会中一组个体的行为模式。PI将制定精确的计算问题,研究其属性,使用新的算法工具来设计高效的算法,并实现由此产生的算法来测试其准确性和效率。拟议的研究将利用进一步开发的新组合工具以前开发的PI,除了开发新技术,设计有效的算法复杂的优化问题。在这个项目的过程中开发的算法将用于验证模拟和真实的数据,并将导致生命科学和社会科学社区的开源软件。在更广泛的层面上,由于这个提议涉及不同科学领域中出现的基本组合优化问题,拟议的研究将对主要研究领域以外的研究领域产生强烈影响,例如在计算机网络的稳定性分析和社交网络可视化中。该提案的一个核心组成部分是创建有意义的教育活动,利用拟议的跨学科研究,并建立在PI在教学,指导和推广方面的丰富经验,以及芝加哥的不同社区。此外,PI计划通过课程和课程开发,本科生,少数民族和代表性不足的群体的参与,研究的有效传播,本科生和研究生的辅导,外展和社区参与,并促进研究和教育活动的多样性。该项目的成果将通过以下研究人员的网站免费提供,他们的实验室:http://www.cs.uic.edu/~dasgupta;http://www.cs.uic.edu/professional/algo-lab.html;和http://www.phys.psu.edu/~ralbert。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhaskar DasGupta其他文献
Opportunity Cost Algorithms for Combinatorial Auctions
组合拍卖的机会成本算法
- DOI:
10.1007/978-1-4757-3613-7_23 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Karhan Akcoglu;James Aspnes;Bhaskar DasGupta;Ming - 通讯作者:
Ming
Polynomial Time Approximation Scheme for Symmetric Rectilinear Steiner Arborescence Problem
- DOI:
10.1023/a:1012730702524 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:1.700
- 作者:
Xiuzhen Cheng;Bhaskar DasGupta;Bing Lu - 通讯作者:
Bing Lu
Activity Theory : Legacies , Standpoints , and Hopes : A discussion of Andy Blunden ’ s An Interdisciplinary Theory of Activity
活动理论:遗产、立场和希望:对安迪·布伦登的跨学科活动理论的讨论
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. Rumbaugh;James E. King;Michael J Beran;David A. Washburn;K. Gould;Nate Kornell;D. J. Scaturo;Brian D. Haig;R. Schvaneveldt;Benjamin K. Barton;Thomas A. Ulrich;Peter Robinson;Matthew J. Schuelke;Eric Anthony Day;Henry W. Chase;E. Carayannis;Timothy M. Flemming;Michael C. Mitchelmore;Paul White;Erin M. Brodhagen;M. Gettinger;E. Usher;David B. Morris;Janna Wardman;J. R. Nelson;R. Low;P. Jin;Betty K. Tuller;Noël Nguyen;Fons Wijnhoven;Gerhard Weber;C. Rigg;K. Trehan;Michael L. Jones;Aytac Gogus;N. Seel;Som Naidu;Danny R. Bedgood;Christina M. Steiner;Birgit Marte;Jürgen Heller;Dietrich Albert;A. Podolskiy;Lorna Uden;Andrew J. Martin;C. Balkenius;B. Johansson;Karen L. Hollis;David A. Cook;J. Bloomberg;Otmar Bock;R. Clariana;Simon Hooper;Amy B. Adcock;R. Van Eck;Chin;Chung;M. Burtsev;J. S. Nairne;Marco Vasconcelos;Josefa N. S. Pandeirada;Liu Yang;Jaime Carbonell;M. Dornisch;G. Manaster;Katie Davis;Marcia L. Conner;Dolores Fidishun;Mark Tennant;J. Gurlitt;J. Fletcher;S. Cerri;G. Veletsianos;P. Wickman;Jason D. Baker;M. Gläser;Soumaya Chaffar;C. Frasson;Dirk Hermans;Heleen Vandromme;Els Joos;Leily Ziglari;Benjamin D. Nye;Barry G. Silverman;E. Marchione;M. Salgado;Mimi Bong;Joaquin A. Anguera;Jin Bo;R. D. Seidler;K. Cennamo;V. Munde;C. Vlaskamp;W. Ruijssenaars;Bea Maes;H. Nakken;John Biggs;C. Tang;Vicki S. Napper;Carolyn E. Schwartz;Zhanna Reznikova;Ben Seymour;W. Yoshida;Ray Dolan;M. Speekenbrink;C. Breitenstein;Stefan Knecht;M. Guarini;Royal Skousen;Steve Chandler;Wendelin M. Küpers;U. Goswami;P. Blenkiron;A. Antonietti;Robert Samuel Matthews;Charlotte Hua Liu;Geoffrey Hall;Mireille Bétrancourt;Sandra Berney;Cathrine Hasse;Nigel Stepp;Martin Volker Butz;Giovanni Pezzulo;Filipo Studzinski Perotto;S. Cooray;A. Bakala;K. Purandare;Anusha Wijeratne;Jeff C. Marshall;Soh;Andrew Byrne;J. Campbell;Umar Syed;Klaus Nielsen;R. Feltman;Andrew J. Elliot;N. Entwistle;Bhaskar DasGupta;Derong Liu;Henning Fernau;Yu;Janusz Wojtusiak;Damian Grace;John M. Keller;Michael J. Ford;Nathalie Muller Mirza;Michael Jackson;Dana LaCourse Munteanu;Jason Arndt;Eva L. Baker;Fabio Alivernini;F. Tonneau;J. Jozefowiez;D. Sagi;Y. Adini;M. Tsodyks;Melissa L. Allen;Friedrich T. Sommer;Vivienne B. Carr;Kristina Wieland;Leslie C. Novosel;D. Deshler;Daniel T. Pollitt;Carrie Mark;Belinda B. Mitchell;K. Wolf;Notger G. Müller;M. Haselgrove;L. Gregory Appelbaum;Joseph A. Harris;Ulrike Halsband;E. Davelaar;Andrew Finch;W. Timothy Coombs;Annie Lang;O. Podolskiy;Stephen Billett;Joseph Psotka;Åsa Hammar;J. Worthen;R. Reed Hunt;Margaret MacDougall;É. Le Bourg;Tiago V. Maia - 通讯作者:
Tiago V. Maia
On approximate learning by multi-layered feedforward circuits
- DOI:
10.1016/j.tcs.2005.09.008 - 发表时间:
2005-12-02 - 期刊:
- 影响因子:
- 作者:
Bhaskar DasGupta;Barbara Hammer - 通讯作者:
Barbara Hammer
Online real-time preemptive scheduling of jobs with deadlines
在线实时抢先调度有截止日期的作业
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Bhaskar DasGupta;M. Palis - 通讯作者:
M. Palis
Bhaskar DasGupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhaskar DasGupta', 18)}}的其他基金
III: Small: Collaborative Research: Network Analysis and Anomaly Detection via Global Curvatures
III:小型:协作研究:通过全局曲率进行网络分析和异常检测
- 批准号:
1814931 - 财政年份:2018
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
ICES: Small: Collaborative Research: Dynamic Parking Assignment Games
ICES:小型:协作研究:动态停车分配游戏
- 批准号:
1216096 - 财政年份:2012
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Algorithms and Software for Discovery of Non-sequential Protein Structure Similarities
合作研究:ABI 开发:用于发现非序列蛋白质结构相似性的算法和软件
- 批准号:
1062328 - 财政年份:2011
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Computational Problems in Bioinformatics Via Combinatorial and Geometric Techniques
职业:通过组合和几何技术解决生物信息学计算问题的有效算法
- 批准号:
0346973 - 财政年份:2004
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
Collaborative Research: Piecewise Linear Hybrid Systems
合作研究:分段线性混合系统
- 批准号:
0206795 - 财政年份:2002
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient Combinatorial Algorithms for Several Tiling, Packing and Covering Problems with Rectangles and Hyper-Rectangles
协作研究:针对矩形和超矩形的多个平铺、填充和覆盖问题的高效组合算法
- 批准号:
0208749 - 财政年份:2002
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
- 批准号:
0296041 - 财政年份:2001
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
RUI: A Proposal for Research on Computing with Neural Models of Computation
RUI:神经计算模型计算研究提案
- 批准号:
9800086 - 财政年份:1998
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
相似国自然基金
液相法药物共晶制备中CCF/溶剂体系高效筛选方法及共晶成核生长机制研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
莪术醇调控CCF抗酒精性脂肪肝中肝细胞衰老的作用机制
- 批准号:81900531
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
幽门螺杆菌疫苗CCF诱导胃组织驻留型记忆T细胞形成机制及免疫保护作用研究
- 批准号:81971562
- 批准年份:2019
- 资助金额:53.0 万元
- 项目类别:面上项目
基于适配子技术和纳米材料信号放大系统的ccf-miRNA电化学检测方法研究
- 批准号:81672108
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
ccf-mtDNA诱导小胶质细胞炎症反应及其影响衰老和肥胖的研究
- 批准号:81670712
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
CCF: AF: Medium: Towards Optimal Pseudorandomness
CCF:AF:中:走向最佳伪随机性
- 批准号:
2312573 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
CCF: FET: Medium: A bio-electronic processor for molecular information systems
CCF:FET:介质:分子信息系统的生物电子处理器
- 批准号:
2212306 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212461 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
CCF: Medium: Learning From Classical and Quantum Data: a Fourier Perspective
CCF:媒介:从经典和量子数据中学习:傅里叶视角
- 批准号:
2211423 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212460 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212462 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
CCF: Medium: Inference with dynamic deep probabilistic models
CCF:中:使用动态深度概率模型进行推理
- 批准号:
2212506 - 财政年份:2022
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
CCF: Medium: Enabling Real-Time Quantitative Decision Making over Streaming Data
CCF:中:通过流数据实现实时定量决策
- 批准号:
1763514 - 财政年份:2018
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
CCF: Medium: Collaborative Research: SHF: Cascode: Supporting and Leveraging Voltage Stacking in Future Microprocessors
CCF:中:协作研究:SHF:共源共栅:支持和利用未来微处理器中的电压堆叠
- 批准号:
1514284 - 财政年份:2015
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant
CCF: Medium: Collaborative Research: SHF: Cascode: Supporting and Leveraging Voltage Stacking in Future Microprocessors
CCF:中:协作研究:SHF:共源共栅:支持和利用未来微处理器中的电压堆叠
- 批准号:
1514433 - 财政年份:2015
- 资助金额:
$ 35.62万 - 项目类别:
Standard Grant