Dynamical Processes in Many-Body Systems: Analysis and Simulations

多体系统中的动力学过程:分析与仿真

基本信息

  • 批准号:
    1066045
  • 负责人:
  • 金额:
    $ 33.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The quantum physics of many interacting electrons lies at the foundation of chemistry and condensed matter physics. A direct treatment of the many-electron problem is impossible due to its shear complexity: dealing with N interacting electrons requires solving partial differential equations in 3N dimensions. Equilibrium and non-equilibrium Density Functional Theories (DFT) are rigorous and formally exact theories which map the interacting N-electron problem into a non-interacting N-electron problem. The non-interacting electrons move in an effective potential that has a universal functional dependence on the total electron density. As a result, the problem is reduced to a problem in dimension 3, amenable for computation. In this proposal the PIs propose to study a number of dynamical problems in many-body quantum mechanics within an interdisciplinary environment of mathematicians and physicists. In particular, the PIs propose to develop further the mathematical foundations of density-functional theory, for equilibrium as well as the time-dependent case. The mathematical structure of the theory and its solutions will be further investigated and the insight from this analysis will be used to develop efficient numerical simulations. Particular emphasis will be given to the treatment of the spin-orbit interaction, within the full relativistic formulations and in non-relativistic formulations that include relativistic corrections. The PIs also plan to establish the foundations of the Dissipative Time-Dependent Density Functional Theory, and to apply the theory to the problem of charge and spin transport in materials.The present technological progress is in great part based on design and discovery of new materials. Nowadays, the design of advanced materials involves laboratory work and computer simulations. Enhancing the accuracy and efficiency of computer simulations will reduce the costs, broaden the array of interesting and potentially useful materials, and speed up the process of testing and characterization. This is the target of the proposed research. The plan is to combine rigorous mathematical analysis, the insights from physics, chemistry and computer simulations in order to push the boundaries of theoretical simulations of advanced materials such as nano-structured materials, topological insulators and molecular electronic devices. The proposed research could have significant technological impact in applications such as nano-science and other areas of interest such as solar cell devices and energy conversion and storage. The PIs propose to integrate research and education by involving undergraduate and graduate students, and post-doctoral associates, in an interdisciplinary environment. Special attention will be paid to the recruitment of women and students from other underrepresented groups through the utilization of a diverse number of programs at the participating institutions.
许多相互作用的电子的量子物理学是化学和凝聚态物理的基础。由于剪切复杂性,直接处理多电子问题是不可能的:处理N个相互作用的电子需要在3N维上求解偏微分方程。平衡和非平衡密度泛函理论(DFT)是将相互作用n电子问题映射为非相互作用n电子问题的严格和形式精确的理论。非相互作用的电子以有效势运动,有效势与总电子密度具有普遍的函数依赖性。结果,该问题被简化为三维问题,便于计算。在本提案中,pi建议在数学家和物理学家的跨学科环境中研究多体量子力学中的一些动力学问题。特别是,pi建议进一步发展密度泛函理论的数学基础,用于平衡和时间相关的情况。该理论的数学结构及其解决方案将进一步研究,并从这一分析的见解将用于开发有效的数值模拟。将特别强调在完整的相对论公式和包含相对论修正的非相对论公式中对自旋轨道相互作用的处理。pi还计划建立耗散时变密度泛函理论的基础,并将该理论应用于材料中的电荷和自旋输运问题。目前的技术进步在很大程度上是基于新材料的设计和发现。如今,先进材料的设计涉及实验室工作和计算机模拟。提高计算机模拟的准确性和效率将降低成本,扩大有趣和潜在有用材料的阵列,并加快测试和表征的过程。这是本研究的目标。该计划将结合严格的数学分析,物理,化学和计算机模拟的见解,以推动纳米结构材料,拓扑绝缘体和分子电子器件等先进材料的理论模拟的边界。拟议的研究可能对纳米科学和其他感兴趣的领域(如太阳能电池装置和能量转换和存储)的应用产生重大的技术影响。pi建议在一个跨学科的环境中,通过让本科生、研究生和博士后参与进来,将研究和教育结合起来。将特别注意通过利用参与机构的各种方案,从其他代表性不足的群体中招收妇女和学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emil Prodan其他文献

Quantization of topological invariants under symmetry-breaking disorder
对称破缺无序下拓扑不变量的量化
Operator product states on tensor powers of $$C^*$$ -algebras
  • DOI:
    10.1007/s43036-024-00389-8
  • 发表时间:
    2024-10-28
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Emil Prodan
  • 通讯作者:
    Emil Prodan
A $C^\ast$-algebraic view on the interaction of real- and reciprocal space topology in skyrmion crystals
关于斯格明子晶体中实空间拓扑和倒易空间拓扑相互作用的$C^ast$-代数视图
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pascal Prass;F. Lux;Emil Prodan;D. Straten;Yuriy Mokrousov
  • 通讯作者:
    Yuriy Mokrousov
Emulation of Schrödinger dynamics with metamaterials
利用超材料对薛定谔动力学进行模拟
  • DOI:
    10.1016/j.scib.2025.02.032
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Zhao-Xian Chen;Wan-Ge Song;Guang-Chen He;Xiao-Meng Zhang;Ze-Guo Chen;Haitan Xu;Emil Prodan
  • 通讯作者:
    Emil Prodan

Emil Prodan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emil Prodan', 18)}}的其他基金

Collaborative Research: Topological Dynamics of Hyperbolic and Fractal Lattices
合作研究:双曲和分形格子的拓扑动力学
  • 批准号:
    2131760
  • 财政年份:
    2021
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Standard Grant
Aperiodic Topological Materials and Meta-Materials
非周期拓扑材料和超材料
  • 批准号:
    1823800
  • 财政年份:
    2019
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Continuing Grant
CAREER: Strong Disorder and Electron Interaction Effects in Topological Insulators
职业:拓扑绝缘体中的强无序和电子相互作用效应
  • 批准号:
    1056168
  • 财政年份:
    2011
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Continuing Grant

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Investigation of magnetic field phase diagrams and magnetic field synthesis processes of binary alloy systems containing many types and multiple magnetic phases
多类型、多磁相二元合金体系磁场相图及磁场合成过程研究
  • 批准号:
    23H01714
  • 财政年份:
    2023
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Many-body effects in finite-time quantum thermodynamic processes
有限时间量子热力学过程中的多体效应
  • 批准号:
    2596277
  • 财政年份:
    2021
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Studentship
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
  • 批准号:
    RGPIN-2014-06187
  • 财政年份:
    2019
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Discovery Grants Program - Individual
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
  • 批准号:
    RGPIN-2014-06187
  • 财政年份:
    2017
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Discovery Grants Program - Individual
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
  • 批准号:
    RGPIN-2014-06187
  • 财政年份:
    2016
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Discovery Grants Program - Individual
Spectroscopy of Many-Body Processes in Nanostructures
纳米结构中多体过程的光谱学
  • 批准号:
    1610427
  • 财政年份:
    2016
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Standard Grant
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
  • 批准号:
    RGPIN-2014-06187
  • 财政年份:
    2015
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Discovery Grants Program - Individual
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
  • 批准号:
    RGPIN-2014-06187
  • 财政年份:
    2014
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Spectroscopy of Many-Body Processes in Nanostructures
RUI:纳米结构多体过程的光谱学
  • 批准号:
    1206975
  • 财政年份:
    2012
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Dynamical Processes in Many-Body Systems: Analysis and Simulations
FRG:协作研究:多体系统中的动态过程:分析和仿真
  • 批准号:
    1065894
  • 财政年份:
    2011
  • 资助金额:
    $ 33.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了