Collaborative Research: Topological Dynamics of Hyperbolic and Fractal Lattices
合作研究:双曲和分形格子的拓扑动力学
基本信息
- 批准号:2131760
- 负责人:
- 金额:$ 27.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will fund research that dramatically enlarges the design space for future vibration absorbing materials and structural designs, with applications to energy harvesting and acoustic panel technologies, thereby promoting the progress of science and advancing the national prosperity. The wave guiding properties of such materials depend on an underlying spatial pattern of individual oscillator elements. While the behavior associated with simple patterns that tessellate the plane using regular polygons is well understood, there is a gap in our knowledge of the ability of other classes of patterns to steer, guide, and localize waves. This project will fill this gap by discovering radically new wave-guiding physics associated with such new classes of patterns, including fractals with self-similar features at multiple scales. The experimental part of this work will uncover solutions to the problems of fabricating acoustic crystals with a desired pattern, as well as characterizing the pattern of a given crystal, opening up new research directions in materials science, acoustics, and mechanics. The project’s collaborative research ecosystem, where pure mathematics meets computational modeling and physical validation, will provide unique training opportunities for both undergraduate and graduate students, as well as for postdoctoral researchers. Outreach programs will expose middle- and high-school students and teachers to advanced topics in geometry, topology, and dynamics through dedicated and hands-on activities.This research aims to make fundamental contributions to the mathematical theory of wave-guiding metamaterials that can be characterized as hyperbolic or fractal lattices, as well as to the ability to physically realize such structures for experimental validation or design. It will achieve this outcome by formulating a theoretical framework for the classification of topological dynamics and of the possible manifestations of the bulk-boundary principle in hyperbolic and fractal lattices. The research will further demonstrate how intrinsic degrees of freedom of such lattices may be controlled to achieve new forms of wave steering, phase control, edge and bulk mode localization, and topological pumping. The experimental effort will demonstrate bioinspired packing and design solutions for large-scale fabrication of aperiodic lattices. The project will expand our knowledge about the collective dynamics of lattices, and will deliver analysis tools, mathematical models, and experimental platforms that will help chart the complex landscape of novel lattice geometries and their possible application for future material and structural designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将用于研究,极大地扩大未来吸振材料和结构设计的设计空间,并应用于能量收集和声学面板技术,从而促进科学进步,促进国家繁荣。这种材料的波导性取决于单个振荡器元件的基本空间模式。虽然与使用规则多边形细分平面的简单图案相关联的行为是众所周知的,但我们对其他类型图案驾驭、引导和定位波浪的能力的了解存在差距。这个项目将通过发现与这种新的模式相关联的全新的波导物理来填补这一空白,包括在多个尺度上具有自相似特征的分形图。这项工作的实验部分将揭示制造具有所需图案的声晶体以及表征给定晶体图案的问题的解决方案,从而在材料科学、声学和力学领域开辟新的研究方向。该项目的合作研究生态系统,其中纯数学满足计算建模和物理验证,将为本科生和研究生以及博士后研究人员提供独特的培训机会。推广项目将通过专门的实践活动让初中生和教师接触到几何学、拓扑学和动力学方面的高级主题。本研究旨在为波导型超材料的数学理论以及为实验验证或设计而物理实现此类结构的能力做出基础性贡献。它将通过为拓扑动力学的分类和体积边界原理在双曲和分形格中的可能表现形式制定一个理论框架来实现这一结果。这项研究将进一步展示如何控制这类晶格的固有自由度,以实现新形式的波控、相位控制、边缘和体模局域化以及拓扑泵浦。这项实验工作将展示生物灵感包装和设计解决方案,用于大规模制造非周期晶格。该项目将扩展我们关于晶格集体动力学的知识,并将提供分析工具、数学模型和实验平台,帮助绘制新型晶格几何图形的复杂景观,以及它们可能在未来材料和结构设计中的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum versus population dynamics over Cayley graphs
凯莱图上的量子与群体动态
- DOI:10.1016/j.aop.2023.169430
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Prodan, Emil
- 通讯作者:Prodan, Emil
Sources of quantized excitations via dichotomic topological cycles
- DOI:10.1103/physrevb.107.165159
- 发表时间:2022-01
- 期刊:
- 影响因子:3.7
- 作者:Bryan Leung;E. Prodan
- 通讯作者:Bryan Leung;E. Prodan
Cyclic cocycles and quantized pairings in materials science
材料科学中的循环共循环和量子化配对
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Emil Prodan
- 通讯作者:Emil Prodan
Glide-reflection symmetric phononic crystal interface: variation on a theme
- DOI:10.1007/s10409-023-23016-x
- 发表时间:2023-05
- 期刊:
- 影响因子:3.5
- 作者:V. Laude;J. A. I. Martínez;N. Laforge;M. Kadic;E. Prodan
- 通讯作者:V. Laude;J. A. I. Martínez;N. Laforge;M. Kadic;E. Prodan
Spectral and Combinatorial Aspects of Cayley-Crystals
- DOI:10.1007/s00023-023-01373-3
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:F. Lux;E. Prodan
- 通讯作者:F. Lux;E. Prodan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emil Prodan其他文献
The <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e1124" altimg="si8.gif" class="math"><mi>K</mi></math>-theoretic bulk-boundary principle for dynamically patterned resonators
- DOI:
10.1016/j.geomphys.2018.10.005 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Emil Prodan;Yitzchak Shmalo - 通讯作者:
Yitzchak Shmalo
Quantization of topological invariants under symmetry-breaking disorder
对称破缺无序下拓扑不变量的量化
- DOI:
10.1103/physrevb.92.195119 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
宋俊涛;Emil Prodan - 通讯作者:
Emil Prodan
Operator product states on tensor powers of $$C^*$$ -algebras
- DOI:
10.1007/s43036-024-00389-8 - 发表时间:
2024-10-28 - 期刊:
- 影响因子:0.700
- 作者:
Emil Prodan - 通讯作者:
Emil Prodan
A $C^\ast$-algebraic view on the interaction of real- and reciprocal space topology in skyrmion crystals
关于斯格明子晶体中实空间拓扑和倒易空间拓扑相互作用的$C^ast$-代数视图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pascal Prass;F. Lux;Emil Prodan;D. Straten;Yuriy Mokrousov - 通讯作者:
Yuriy Mokrousov
Emulation of Schrödinger dynamics with metamaterials
利用超材料对薛定谔动力学进行模拟
- DOI:
10.1016/j.scib.2025.02.032 - 发表时间:
2025-04-30 - 期刊:
- 影响因子:21.100
- 作者:
Zhao-Xian Chen;Wan-Ge Song;Guang-Chen He;Xiao-Meng Zhang;Ze-Guo Chen;Haitan Xu;Emil Prodan - 通讯作者:
Emil Prodan
Emil Prodan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emil Prodan', 18)}}的其他基金
Aperiodic Topological Materials and Meta-Materials
非周期拓扑材料和超材料
- 批准号:
1823800 - 财政年份:2019
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Dynamical Processes in Many-Body Systems: Analysis and Simulations
多体系统中的动力学过程:分析与仿真
- 批准号:
1066045 - 财政年份:2011
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
CAREER: Strong Disorder and Electron Interaction Effects in Topological Insulators
职业:拓扑绝缘体中的强无序和电子相互作用效应
- 批准号:
1056168 - 财政年份:2011
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344490 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310356 - 财政年份:2023
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310412 - 财政年份:2023
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234921 - 财政年份:2023
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant