Complex Phenomena in Ferroelectrics and Multiferroics from First Principles

从第一原理看铁电体和多铁体的复杂现象

基本信息

  • 批准号:
    1066158
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis award supports a research program that is aimed at: (1) investigating complex phenomena in bulk ferroelectric materials and ferroelectric nanocomposites, (2) modeling and understanding static and dynamical properties of multiferroics in their simple bulk, solid solution, and ultrathin forms, and (3) designing new dipolar materials with desirable and new properties. The research objectives will be tackled through the development and use of the following state-of-the-art and ab initio numerical tools: (i) first-principles techniques, (ii) effective Hamiltonian approaches that extend the reach of first-principles calculations by realistically mimicking static and dynamical properties of ferroelectrics and multiferroics at finite temperature, and (iii) the inverse method that allows an efficient design of materials with improved properties.Existing collaborations with well-known European research groups who have a vital experimental program on ferroelectrics and multiferroics will be strengthened. The proposed cooperative activities between the University of Arkansas and the European partners will allow a careful side-by-side comparison between predictions and measurements, which is important to fully understand the systems to be investigated, and to refine the numerical tools to be developed. A broad and deep knowledge of complex phenomena, nanoscience and phase transitions in dipolar systems is expected to be gained thanks to the diversity of techniques to be developed and used, and the variety of systems to be investigated.This research program will be integrated into the educational experience of students by: (i) training them in computational and experimental physics via a joint Ph.D. program between the University of Arkansas and Ecole Centrale de Paris in France, (ii) organizing a weekly video conference as well as regular visits between the European collaborators and the University of Arkansas, and (iii) incorporating recent research findings on ferroelectrics and multiferroics into Condensed Matter Physics classes. The PI will also aim at increasing diversity by attracting students from underrepresented groups to be active players of the proposed projects.NONTECHNICAL SUMMARYFerroelectrics possess a spontaneous electric polarization that can be reversed by applying an electric field. These materials are of importance for a variety of device applications, such as "piezoelectric transducers" that convert electrical pulses to mechanical vibrations and vice versa, actuators that convert energy into various kinds of motion, "non-volatile memories" that retain stored information even when not powered, and dielectrics for microelectronics and wireless communication. Similarly, multiferroics form a promising class of materials that exhibits a rare coexistence between ferroelectricity and magnetism that may be prove to ve very useful for designing novel devices. Several materials related issues in ferroelectrics and multiferroics are presently unknown. The present award supports a research program that is aimed at: (1) investigating complex phenomena in ferroelectric materials, (2) modeling and understanding several properties of multiferroics, and (3) designing new materials with desirable and new properties. The PI will develop and use various computational techniques to achieve these goals. Existing collaborations with well-known European research groups who have a vital experimental program on ferroelectrics and multiferroics will be strengthened. The proposed cooperative activities between the University of Arkansas and the European partners will allow a careful side-by-side comparison between predictions and measurements, which is important to fully understand the systems to be investigated, and to refine the numerical tools to be developed. A broad and deep knowledge of complex phenomena, nanoscience and phase transitions is expected to be gained thanks to the diversity of techniques to be developed and used, and the variety of systems to be investigated. In addition to building a network that will be the basis for future collaborations and exchange of students between the involved institutions, the collaborative efforts also have the potential to result in the realization of devices with improved and/or new functionalities that can positively affect quality of life and improve energy efficiency and storage.This research program will be integrated into the educational experience of students by: (i) training them in computational and experimental physics via a joint Ph.D. program between the University of Arkansas and Ecole Centrale de Paris in France, (ii) organizing a weekly video conference as well as regular visits between the European collaborators and the University of Arkansas, and (iii) incorporating recent research findings on ferroelectrics and multiferroics into Condensed Matter Physics classes. The PI will also aim at increasing diversity by attracting students from underrepresented groups to be active players of the proposed projects.
该奖项支持的研究计划旨在:(1)研究块体铁电材料和铁电纳米复合材料中的复杂现象,(2)建模和理解多铁性材料在其简单的块体,固溶体和晶体形式中的静态和动态特性,以及(3)设计具有理想和新特性的新偶极材料。将通过开发和使用以下最先进的从头算数值工具来实现研究目标:(i)第一性原理技术,(ii)有效的哈密顿方法,通过逼真地模拟有限温度下铁电体和多铁性体的静态和动态特性,扩展了第一性原理计算的范围,和(iii)逆方法,允许一个有效的材料设计与改进的性能。现有的合作与著名的欧洲研究小组谁拥有铁电和多铁性的重要实验计划将得到加强。阿肯色州大学和欧洲合作伙伴之间拟议的合作活动将允许在预测和测量之间进行仔细的并排比较,这对于充分了解待研究的系统和完善待开发的数值工具非常重要。 由于要开发和使用的技术的多样性,以及要研究的系统的多样性,预计将获得对复杂现象,纳米科学和偶极系统相变的广泛而深入的知识。该研究计划将通过以下方式融入学生的教育经验:(i)通过联合博士学位培训他们在计算和实验物理学方面。该计划包括:(i)在阿肯色州和法国巴黎中央高等学校之间建立一个合作项目;(ii)组织每周一次的视频会议以及欧洲合作者和阿肯色州大学之间的定期访问;(iii)将最近关于铁电体和多铁性的研究成果纳入凝聚态物理课程。 PI还旨在通过吸引来自代表性不足的群体的学生成为拟议项目的积极参与者来增加多样性。非技术概述铁电体具有自发的电极化,可以通过施加电场来逆转。这些材料对于各种设备应用是重要的,例如将电脉冲转换为机械振动并且反之亦然的“压电换能器”、将能量转换为各种运动的致动器、即使在不供电时也保留存储的信息的“非易失性存储器”、以及用于微电子和无线通信的MEMS。类似地,多铁性材料形成了一类很有前途的材料,其表现出铁电性和磁性之间的罕见共存,这可能被证明对设计新颖的器件非常有用。铁电体和多铁性中的几个材料相关问题目前是未知的。该奖项支持的研究计划旨在:(1)研究铁电材料中的复杂现象,(2)建模和理解多铁性的几个属性,以及(3)设计具有理想和新属性的新材料。 PI将开发和使用各种计算技术来实现这些目标。 与欧洲著名研究小组的现有合作将得到加强,这些研究小组在铁电体和多铁性方面拥有重要的实验计划。 阿肯色州大学和欧洲合作伙伴之间拟议的合作活动将允许在预测和测量之间进行仔细的并排比较,这对于充分了解待研究的系统和完善待开发的数值工具非常重要。 由于要开发和使用的技术的多样性以及要研究的系统的多样性,预计将获得对复杂现象,纳米科学和相变的广泛而深入的知识。除了建立一个网络,这将是未来合作的基础和相关机构之间的学生交流,合作的努力也有可能导致实现设备的改进和/或新的功能,可以积极影响生活质量,提高能源效率和存储。这项研究计划将通过以下方式融入学生的教育体验:(i)通过联合博士学位课程对他们进行计算和实验物理方面的培训。该计划包括:(i)在阿肯色州和法国巴黎中央高等学校之间建立一个合作项目;(ii)组织每周一次的视频会议以及欧洲合作者和阿肯色州大学之间的定期访问;(iii)将最近关于铁电体和多铁性的研究成果纳入凝聚态物理课程。 PI还旨在通过吸引代表性不足的群体的学生成为拟议项目的积极参与者来增加多样性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurent Bellaiche其他文献

Electrocaloric effects in ferroelectrics and multiferroics from first principles
基于第一性原理的铁电体和多铁体中的电热效应
  • DOI:
    10.1016/j.jmat.2025.101063
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Zhijun Jiang;Xueqing Wan;Bin Xu;Jorge Íñiguez-González;Laurent Bellaiche
  • 通讯作者:
    Laurent Bellaiche
Zeeman Effect in Centrosymmetric Antiferromagnetic Semiconductors Controlled by an Electric Field
  • DOI:
    https://doi.org/10.1103/PhysRevLett.129.187602
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Hong Jian Zhao;Xinran Liu;Yanchao Wang;Yurong Yang;Laurent Bellaiche;Yanming Ma
  • 通讯作者:
    Yanming Ma
Skyrmion nanodomains in ferroelectric–antiferroelectric solid solutions
铁电-反铁电固溶体中的斯格明子纳米畴
  • DOI:
    10.1038/s41563-025-02216-8
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Weijie Zheng;Xingyue Ma;Zhentao Pang;Yifeng Ren;Hongying Chen;Jibo Xu;Chunyan Zheng;Jianyi Liu;Xiaohui Liu;Yu Deng;Yuefeng Nie;Di Wu;Laurent Bellaiche;Yurong Yang;Zheng Wen
  • 通讯作者:
    Zheng Wen
Band structure engineering of van der Waals heterostructures using ferroelectric clamped sandwich structures
使用铁电夹层结构的范德华异质结构的能带结构工程
  • DOI:
    10.1103/physrevb.103.125426
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hao Tian;Changsong Xu;Xu Li;Yurong Yang;Laurent Bellaiche;Di Wu
  • 通讯作者:
    Di Wu
Large enhancement of properties in strained lead-free multiferroic solid solutions with strong deviation from Vegard’s law
严重偏离维加德定律的应变无铅多铁性固溶体中性能的大幅提升
  • DOI:
    10.1016/j.matt.2024.09.018
  • 发表时间:
    2025-01-08
  • 期刊:
  • 影响因子:
    17.500
  • 作者:
    Tao Wang;Min-Jie Zou;Dehe Zhang;Yu-Chieh Ku;Yawen Zheng;Shen Pan;Zhongqi Ren;Zedong Xu;Haoliang Huang;Wei Luo;Yunlong Tang;Lang Chen;Cheng-En Liu;Chun-Fu Chang;Sujit Das;Laurent Bellaiche;Yurong Yang;Xiu-Liang Ma;Chang-Yang Kuo;Xingjun Liu;Zuhuang Chen
  • 通讯作者:
    Zuhuang Chen

Laurent Bellaiche的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laurent Bellaiche', 18)}}的其他基金

Complex Phenomena in Ferroelectrics and Multiferroics from First Principles
从第一原理看铁电体和多铁体的复杂现象
  • 批准号:
    0701558
  • 财政年份:
    2007
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Modelling and Designing Ferroelectrics with Defects and in Two-Dimensional Forms
具有缺陷和二维形式的铁电体的建模和设计
  • 批准号:
    0404335
  • 财政年份:
    2004
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Deep Microscopic Understanding of Ferroelectric Alloys
职业生涯:深入微观了解铁电合金
  • 批准号:
    9983678
  • 财政年份:
    2000
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant

相似海外基金

SHINE: The Evolution of Coronal Dimmings and Their Relationship to Eruptive Phenomena
闪耀:日冕变暗的演变及其与喷发现象的关系
  • 批准号:
    2400789
  • 财政年份:
    2025
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Research Grant
Persistent Optical Phenomena in Oxide Semiconductors
氧化物半导体中的持久光学现象
  • 批准号:
    2335744
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Understanding quantum emergent phenomena in Shastry-Sutherland model systems
了解 Shastry-Sutherland 模型系统中的量子涌现现象
  • 批准号:
    2327555
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
  • 批准号:
    2339644
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
  • 批准号:
    2340728
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
  • 批准号:
    EP/V048333/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Research Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了