Nanostructured Block Copolymer Gels for Storage and Protection of Concentrated Proteins
用于储存和保护浓缩蛋白质的纳米结构嵌段共聚物凝胶
基本信息
- 批准号:1066503
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractPI: Walker, Lynn M. Proposal Number: CBET-1066503Institution: Carnegie-Mellon UniversityTitle: Nanostructured Block Copolymer Gels for Storage and Protection of Concentrated ProteinsThe PI has addressed the following reviewer concerns:1. The proposed method will require a large amount of polymeric material to create micelles and nanostructured materials. Because purity of protein is generally an important issue to consider for applications involving proteins, the proposed method may require additional purification stages to be an effective strategy for protein storage. The hydrogel-protected protein composite that will result from this approach will have high loadings of protein (~ 30 mg/mL, or 1-3wt%) in a block copolymer matrix that is primarily water (~25-35% polymer and 65-75% water). Many application methods (for example, topical application of proteins that act as antidotes) could be used immediately even at these polymer levels. Since the protein loadings are high, there is room for dilution (with saline or water) on use; this will lower the overall concentration of polymer in the formulation at the point of application. Typical therapeutic concentrations of proteins can be an order of magnitude below the level loaded into the hydrogel, so dilution of the protein will result in a commensurate dilution of the block copolymer. Again, many protein applications will tolerate a small weight percent of polymer in the use. A part of our motivation for choosing Pluronic materials is that these have been FDA approved for several uses; including application to the skin, eyes, oral ingestion and, in some cases, injection. Finally, if complete removal of the polymer is required, it is important to note that the molecular weight of the uncharged block copolymer is lower than most proteins of interest and the hydrodynamic size is considerably smaller. Therefore, either diluted or cooled solutions can be purified with size exclusion or electrokinetic approaches (CE, SEC or even simple dialysis). For highly sensitive proteins, or those that need extremely high levels of purity, the use of nanostructured hydrogels may not be possible. Developing approaches to test whether this approach is effective for a given protein is part of Goals 2 & 3 of the proposed work. For example, light scattering and circular dichroism tests were developed and used to demonstrate that BSA (and lysozyme) can be templated within the hydrogel and recovered. These proteins are not particularly sensitive, but success with these materials demonstrates the strong likelihood for success with a wider range of proteins.2. Also, the proposal does not adequately address issues regarding the protein loading behavior of the proposed nanostructured materials. The loading procedure is part of the novelty of this approach. The thermoreversible hydrogel allows the protein to be dispersed at cold temperatures and then "loaded" into the nanostructured gel simply by warming to temperatures above about room temperature. Proteins are nudged into the interstitial spaces through steric interactions as the block copolymer micelles form. The PI's previous work has demonstrated our ability to use this approach to template nanoparticles and globular proteins (see ref 1-5 and 49 of the proposal). This process is reversible and has been shown (see Fig 4 of proposal) not to cause detrimental effects to the protein, at least at the level of aggregation. Figure 1 of the proposal was intended to show this procedure, but is not as clear as it could have been.3. The advantage of the proposed strategy over the strategies relying on the encapsulation of proteins within liposomes or micelles is not clear.Strategies that focus on encapsulation of proteins in liposomes or micelles are quite different than the proposed approach. Here, the PI is trapping the proteins in the interstitial (water-filled) spaces in the block copolymer crystal, and taking advantage of both the nanoscale confinement and macromolecular crowding mechanisms for protein protection. Other approaches encapsulate the proteins in the cores of reverse micelles, but this requires a continuous solvent phase that is non-aqueous. An advantage of the proposed approach is the use of water (or saline, buffers, etc.) as a solvent rather than non-aqueous solvents which can denature proteins and require a purification step that calls for high levels of purity. Liposomes offer a complimentary technique but are much more complex systems and often involve electrostatics as a force driving self-assembly. Here, the PI avoids this level of complexity, which can lead to specific interactions between the lipids that make up the liposomes and the proteins (specific interactions which can lead to denaturation). Finally, a key to the PI?s approach is the thermoreversibility of the nanostructured hydrogel and the ability to form/break the matrix with small changes in a temperature range that does not damage proteins. This structural control is not available in micelle or liposome encapsulation.
步行者,林恩M.提案编号:CBET-1066503机构:美国梅隆大学标题:用于浓缩蛋白质储存和保护的纳米结构嵌段共聚物凝胶PI已解决了以下评审员关注的问题:1.所提出的方法需要大量聚合物材料来产生胶束和纳米结构材料。由于蛋白质的纯度通常是涉及蛋白质的应用中需要考虑的重要问题,因此所提出的方法可能需要额外的纯化阶段才能成为蛋白质储存的有效策略。将由该方法产生的水凝胶保护的蛋白质复合物将在主要为水(约25-35%聚合物和65-75%水)的嵌段共聚物基质中具有高蛋白质负载(约30 mg/mL,或1-3wt%)。 许多应用方法(例如,局部应用蛋白质作为解毒剂)可以立即使用,即使在这些聚合物水平。 由于蛋白质载量高,因此在使用时有稀释(用盐水或水)的空间;这将降低应用时制剂中聚合物的总浓度。 蛋白质的典型治疗浓度可以比加载到水凝胶中的水平低一个数量级,因此蛋白质的稀释将导致嵌段共聚物的相称稀释。 同样,许多蛋白质应用在使用中将容许小重量百分比的聚合物。 我们选择Pluronic材料的部分动机是,这些材料已被FDA批准用于多种用途;包括皮肤、眼睛、口服以及某些情况下的注射。 最后,如果需要完全去除聚合物,重要的是要注意不带电荷的嵌段共聚物的分子量低于大多数目标蛋白质,并且流体动力学尺寸相当小。 因此,稀释或冷却的溶液可以用尺寸排阻或电动方法(CE、SEC或甚至简单的透析)纯化。 对于高度敏感的蛋白质,或者那些需要极高纯度的蛋白质,使用纳米结构水凝胶可能是不可能的。 开发方法来测试这种方法是否对给定蛋白质有效是拟议工作目标2和3的一部分。 例如,开发了光散射和圆二色性测试,并用于证明BSA(和溶菌酶)可以在水凝胶内模板化并回收。 这些蛋白质并不是特别敏感,但这些材料的成功表明了更广泛蛋白质的成功可能性很大。2.此外,该提案没有充分解决关于所提出的纳米结构材料的蛋白质负载行为的问题。加载过程是这种方法的新奇的一部分。 热可逆水凝胶允许蛋白质在低温下分散,然后简单地通过升温至高于约室温的温度而“加载”到纳米结构凝胶中。 当嵌段共聚物胶束形成时,蛋白质通过空间相互作用被推入间隙空间。 PI之前的工作已经证明了我们使用这种方法来模板纳米颗粒和球状蛋白的能力(参见参考文献1-5和49)。该过程是可逆的,并且已经显示(参见提案的图4)不会对蛋白质造成有害影响,至少在聚集水平上是如此。 提案中的图1旨在说明这一程序,但并不十分清楚。所提出的策略相对于依赖于脂质体或胶束中的蛋白质包封的策略的优势尚不清楚。专注于脂质体或胶束中的蛋白质包封的策略与所提出的方法有很大不同。 在这里,PI将蛋白质捕获在嵌段共聚物晶体的间隙(充满水)空间中,并利用纳米级限制和大分子拥挤机制来保护蛋白质。 其他方法将蛋白质包封在反胶束的核心中,但这需要非水的连续溶剂相。 所提出的方法的优点是使用水(或盐水、缓冲液等)。作为溶剂而不是非水溶剂,非水溶剂可使蛋白质变性并需要要求高纯度水平的纯化步骤。 脂质体提供了一种补充技术,但它是一种复杂得多的系统,通常涉及静电作为驱动自组装的力。 在这里,PI避免了这种复杂程度,这可能导致构成脂质体的脂质与蛋白质之间的特异性相互作用(可能导致变性的特异性相互作用)。 最后,一个关键的PI?的方法是纳米结构水凝胶的热可逆性和在不损害蛋白质的温度范围内以微小变化形成/破坏基质的能力。 这种结构控制在胶束或脂质体包封中不可用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynn Walker其他文献
Using Machine Learning To Identify Biopsychosocial Factors And Predict Treatment Outcomes In A Randomized Controlled Trial For Youth With Chronic Pain
利用机器学习来识别生物心理社会因素并预测患有慢性疼痛的青少年随机对照试验中的治疗结果
- DOI:
10.1016/j.jpain.2023.02.271 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:4.000
- 作者:
Gloria Han;Amanda Stone;Stephen Bruehl;Lynn Walker - 通讯作者:
Lynn Walker
Sa1637 IBS MOTHERS IN JAPAN WHO HAVE CHILDREN WITH RECURRENT ABDOMINAL PAIN (RAP) ARE MORE LIKELY TO DISCOURAGE RATHER THAN TO ENCOURAGE CHILD ILLNESS BEHAVIOR.
- DOI:
10.1016/s0016-5085(20)31603-6 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Motoyori Kanazawa;Daiki Abukawa;Nami Honda;Shunichi Funakoshi;Fumihiko Kakuta;William E. Whitehead;Lynn Walker;Rona L. Levy;Shin Fukudo - 通讯作者:
Shin Fukudo
Multimodal Hypersensitivity Predicts the Development of Widespread Body Pain in Adolescents
多模式超敏反应可预测青少年广泛性身体疼痛的发展
- DOI:
10.1016/j.jpain.2024.01.258 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:4.000
- 作者:
Emily Burda;Natalie R. Osborne;Sarah E. Darnell;Andrew Schrepf;Lynn Walker;Kevin Hellman;Frank Tu - 通讯作者:
Frank Tu
IBS mothers in Japan who have children with recurrent abdominal pain (RAP) are more likely to discourage rather than to encourage child illness behavior
日本的 IBS 母亲如果孩子患有复发性腹痛 (RAP),更有可能阻止而不是鼓励孩子患病行为
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Motoyori Kanazawa;Daiki Abukawa;Nami Honda;Shunichi Funakoshi;Fumihiko Kakuta;William E. Whitehead;Lynn Walker;Rona L. Levy;Shin Fukudo - 通讯作者:
Shin Fukudo
Mo2005 NONINVASIVE BIOELECTRIC SIGNATURES TO QUANTIFY NAUSEA SEVERITY IN PEDIATRIC FUNCTIONAL NAUSEA
- DOI:
10.1016/s0016-5085(23)03198-0 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Suseela Somarajan;Nicole D. Muszynski;joseph Olson;Alexandra Russell;Lynn Walker;Sari Acra;Leonard A. Bradshaw - 通讯作者:
Leonard A. Bradshaw
Lynn Walker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynn Walker', 18)}}的其他基金
Synergizing Surfactants and Electric Fields to Engineer the Mechanics of Fluid-Fluid Interface.
协同表面活性剂和电场来设计流体-流体界面的力学。
- 批准号:
1804548 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Connecting Interfacial Properties to Emulsion Stability for Complex Particle-Laden Interfaces
将复杂颗粒界面的界面特性与乳液稳定性联系起来
- 批准号:
1437864 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
2010 Colloidal, Macromolecular & Polyelectrolyte Solutions Gordon Research Conference
2010 胶体、高分子
- 批准号:
0962741 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRI: Acquisition of SAXS for Nanostructural Characterization of Self-Assembled Materials
MRI:获取 SAXS 用于自组装材料的纳米结构表征
- 批准号:
0521079 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Relating Micellar Structure to Aggregate Properties in Polymerization of Wormlike Micelles
职业:将胶束结构与蠕虫状胶束聚合中的聚集体特性联系起来
- 批准号:
0092967 - 财政年份:2001
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
POWRE: Rheology and Microstructure of Dilute Surfactant Systems in Complex Flows
POWRE:复杂流动中稀释表面活性剂体系的流变学和微观结构
- 批准号:
9753157 - 财政年份:1998
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
International Postdoctoral Fellows Program: Rheology and Morphology of Immiscible Blends of Flexible and Liquid Crystal Polymers
国际博士后项目:柔性液晶聚合物不混溶混合物的流变学和形态学
- 批准号:
9505545 - 财政年份:1995
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
安氏II类1分类伴下颌后缩生长发育期患者Twin Block矫治后上气道反应的流体动力学仿真模拟
- 批准号:81571010
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Block 型无穷维李代数在Toda系统中的应用
- 批准号:11201251
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
应用常染色体单倍域(Haplotype Block)研究中国人群的遗传结构
- 批准号:30571060
- 批准年份:2005
- 资助金额:22.0 万元
- 项目类别:面上项目
客家人G6PD基因位点Haplotype Block的研究
- 批准号:30470949
- 批准年份:2004
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Photo-responsive block copolymer that apply reversible mechanical stress to cells
向细胞施加可逆机械应力的光响应嵌段共聚物
- 批准号:
23H02030 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design of Multifunctional Nanocomposites through Mixed-Graft Block Copolymer Templating
通过混合接枝嵌段共聚物模板设计多功能纳米复合材料
- 批准号:
2320956 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Block Copolymer Based Multicomponent Self-assembly of Porous Nanostructures From Non-equilibrium Processes
基于嵌段共聚物的非平衡过程多孔纳米结构的多组分自组装
- 批准号:
2307013 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Improvement of drug delivery efficiency based on surface modification of lipid nanoparticle by oligosaccharide containing block copolymer
基于含寡糖嵌段共聚物的脂质纳米粒子表面修饰提高药物递送效率
- 批准号:
22KJ0124 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mechanically tunable cell scaffold based on a photo reversible ion gel of azobenzene block copolymer
基于偶氮苯嵌段共聚物光可逆离子凝胶的机械可调细胞支架
- 批准号:
22KJ0102 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Beyond alignment: novel mechanisms for controlling block copolymer phase behavior using magnetic fields
职业:超越排列:利用磁场控制嵌段共聚物相行为的新机制
- 批准号:
2143162 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Controlled Synthesis of Sustainable Block Copolymer Compatibilizers
可持续嵌段共聚物增容剂的受控合成
- 批准号:
2824281 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Studentship
Block copolymer-dsRNA complexes for crop protection
用于作物保护的嵌段共聚物-dsRNA 复合物
- 批准号:
2746546 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Studentship
Structural Analysis of Proton Transport Network in Block Copolymer Electrolyte Membrane Revealed through Transmission Electron Microtomography Observation
通过透射电子显微断层扫描观察揭示嵌段共聚物电解质膜中质子传输网络的结构分析
- 批准号:
21K05193 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineering Block Copolymer and Hybrid Nanotechnologies of Well-Defined Architecture
工程嵌段共聚物和结构明确的混合纳米技术
- 批准号:
RGPIN-2016-04293 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual