CAREER: Beyond alignment: novel mechanisms for controlling block copolymer phase behavior using magnetic fields
职业:超越排列:利用磁场控制嵌段共聚物相行为的新机制
基本信息
- 批准号:2143162
- 负责人:
- 金额:$ 67.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL SUMMARY:Block copolymers (BCPs) are a class of materials composed of two or more chemically-linked distinct blocks of molecular chains. Such materials are used in drug delivery, adhesives, batteries and electronics. BCPs are attractive for developing these types of advanced materials because they can spontaneously form nanometer-sized structures with well-defined features via a process known as self-assembly. However, to more broadly harness the unique properties of BCPs, their self-assembly and ordering on large lengthscales must be well-controlled. This research aims to uncover new mechanisms underlying creation of new BCP structures using low-intensity magnetic fields, and subsequently harness these findings to develop new BCP materials with tunable properties. In the broader context, this project will provide fundamental knowledge on new methods for assembling and processing BCPs into ordered materials using minimal energy from external fields, potentially providing a more sustainable route for developing advanced materials than traditional processing methods. More broadly, to improve enthusiasm, engagement, and subsequent matriculation in materials-related fields, the project will also employ digital tools, inclusive teaching and lab practices, research-based course content, and lab tours with hands-on demos for students at the high school through graduate levels, with a particular focus on engaging women and students from communities of color.TECHNICAL SUMMARY:While block copolymers (BCPs) are attractive for developing advanced materials, practical methods for processing BCPs into materials with long-range order are limited, as techniques like magnetic or electric field alignment are typically unfeasible due to the large required field strengths and limited field-responsive chemistries. This project will determine the mechanisms underlying newly-discovered magnetic field-induced phase formation in weakly diamagnetic BCP solutions that cannot be explained by traditional mechanisms of domain alignment, and employ these findings to develop new BCP materials with ordering over large lengthscales. The central hypothesis posits that low intensity magnetic fields promote phase transitions primarily by altering the structure and mobility of both polymer and solvent. The underlying molecular-scale mechanisms will be investigated via a suite of spectroscopic tools; magneto-rheology and small angle scattering will then determine how these molecular mechanisms manifest at longer lengthscales. Finally, processing parameters such as temperature, field strength, and magnetization geometry will be examined to develop guidelines for precisely controlling the resulting phase and associated mechanical properties. This understanding will then be used to develop guidelines for selecting solvents, BCP architectures, and block chemistries that enhance field-responsiveness, opening an entirely new approach for developing well-ordered BCP materials with finely-tuned properties..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。非技术概述:嵌段共聚物(BCP)是一类由两个或多个化学连接的不同分子链嵌段组成的材料。 这些材料用于药物输送、粘合剂、电池和电子产品。BCP对于开发这些类型的先进材料具有吸引力,因为它们可以通过称为自组装的过程自发形成具有明确特征的纳米尺寸结构。然而,为了更广泛地利用BCP的独特性质,必须很好地控制它们在大长度尺度上的自组装和有序化。这项研究旨在揭示使用低强度磁场创建新BCP结构的新机制,并随后利用这些发现开发具有可调性能的新BCP材料。在更广泛的背景下,该项目将提供关于使用来自外部场的最小能量将BCP组装和加工成有序材料的新方法的基础知识,可能为开发先进材料提供比传统加工方法更可持续的途径。更广泛地说,为了提高材料相关领域的热情、参与度和随后的入学率,该项目还将采用数字化工具、包容性教学和实验室实践、基于研究的课程内容以及实验室图尔斯之旅,并为高中至研究生阶段的学生提供实践演示,特别注重吸引来自有色人种社区的妇女和学生。虽然嵌段共聚物(BCP)对于开发先进材料是有吸引力的,但是将BCP加工成具有长程有序的材料的实用方法是有限的,因为像磁场或电场对准这样的技术由于所需的大的场强和有限的场而通常是不可行的,响应化学。该项目将确定弱抗磁性BCP解决方案中新发现的磁场诱导相形成的机制,这些机制不能用传统的畴排列机制来解释,并利用这些发现开发新的BCP材料。中心假设假定,低强度磁场主要通过改变聚合物和溶剂的结构和流动性来促进相变。潜在的分子尺度机制将通过一套光谱工具进行研究;磁流变学和小角散射将确定这些分子机制如何在更长的长度尺度上表现出来。最后,加工参数,如温度,磁场强度和磁化几何形状将被检查,以制定精确控制所产生的相位和相关的机械性能的指导方针。然后,这种理解将用于制定选择溶剂,BCP架构和增强场响应性的嵌段化学的指导方针,为开发具有微调特性的有序BCP材料开辟了一种全新的方法。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Calabrese其他文献
Michelle Calabrese的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Calabrese', 18)}}的其他基金
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
- 批准号:
2323989 - 财政年份:2023
- 资助金额:
$ 67.12万 - 项目类别:
Standard Grant
相似海外基金
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Research Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301410 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Standard Grant
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
- 批准号:
23K21120 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
- 批准号:
24K17352 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301405 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Continuing Grant
CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
- 批准号:
2339487 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 67.12万 - 项目类别:
Continuing Grant