Remote Entanglement of Trapped Ions and Loophole-Free Bell Inequality

俘获离子的远程纠缠和无漏洞贝尔不等式

基本信息

  • 批准号:
    1067054
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Entanglement, one of the most bizarre features of quantum mechanics, leads to strong correlations between quantum objects, regardless of the distance separating them. These correlations, called the "spooky action at a distance" by Einstein, are essential for quantum computing and quantum communications. We produce by controlled spontaneous emission of photons by trapped atomic ions; correlated measurement of the photons emitted by two remote ions leads to entanglement of these ions. Since photons can be transmitted over a long distance in optical fibers, the two entangled ions can be very far apart. Tests of whether quantum mechanics is required to explain these correlations were described by physicist John Bell in the celebrated "Bell inequality". The goal of this project is to measure the Bell inequality between two ions separated by about 1 kilometer. Entanglement and decoherence will be studied in great detail, and a completely loophole-free Bell inequality test will be performed.The research will further our understanding of quantum mechanics, and develop new, useful tools and concepts for quantum information science. Possible applications of the atom-photon entangled state are numerous. They range from a quantum repeater system for secure long-distance quantum communications to the measurement-based quantum computer technology. The educational part of this program includes research training for undergraduate and graduate students and actively involving students from groups underrepresented in physics in cutting edge research, developing and establishing undergraduate and graduate curriculum in quantum information science, and reaching out to the broader society through public lectures and public events, such as the University of Washington Husky Days at the Pacific Science Center in Seattle.
纠缠是量子力学最奇异的特征之一,它导致量子物体之间的强相关性,而不管它们之间的距离如何。这些相关性被爱因斯坦称为“幽灵般的远距离作用”,对于量子计算和量子通信至关重要。我们通过受控的自发发射的光子捕获的原子离子产生的相关测量的两个远程离子发射的光子导致这些离子的纠缠。由于光子可以在光纤中传输很长的距离,两个纠缠的离子可以相距很远。物理学家约翰·贝尔在著名的“贝尔不等式”中描述了是否需要量子力学来解释这些相关性的测试。该项目的目标是测量两个相距约1公里的离子之间的贝尔不等式。我们将详细研究纠缠和退相干,并进行完全无环洞的贝尔不等式检验,从而加深我们对量子力学的理解,并为量子信息科学发展新的、有用的工具和概念。原子-光子纠缠态的可能应用有很多。它们的范围从用于安全长距离量子通信的量子中继器系统到基于测量的量子计算机技术。该计划的教育部分包括为本科生和研究生提供研究培训,并积极参与前沿研究中物理学代表性不足的群体的学生,开发和建立量子信息科学的本科生和研究生课程,并通过公开讲座和公共活动(如华盛顿大学赫斯基日在西雅图太平洋科学中心)接触更广泛的社会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Blinov其他文献

Efficient fluorescence collection and ion imaging with the “tack” ion trap
使用“粘性”离子阱进行高效荧光收集和离子成像
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gang Shu;Chen;Nathan Kurz;Matthew Dietrich;Boris Blinov
  • 通讯作者:
    Boris Blinov
Hidden context
隐藏的上下文
  • DOI:
    10.1038/460464a
  • 发表时间:
    2009-07-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Boris Blinov
  • 通讯作者:
    Boris Blinov
Hidden context
隐藏的上下文
  • DOI:
    10.1038/460464a
  • 发表时间:
    2009-07-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Boris Blinov
  • 通讯作者:
    Boris Blinov
Efficient fluorescence collection from trapped ions with an integrated spherical mirror
使用集成球面镜从捕获的离子中高效收集荧光
  • DOI:
    10.1103/physreva.81.042321
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gang Shu;Nathan Kurz;Matthew Dietrich;Boris Blinov
  • 通讯作者:
    Boris Blinov
A Paul trap with sectored ring electrodes for experiments with two-dimensional ion crystals.
带有扇形环形电极的保罗陷阱,用于二维离子晶体实验。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    M. Ivory;Alexander Kato;A. Hasanzadeh;Boris Blinov
  • 通讯作者:
    Boris Blinov

Boris Blinov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Blinov', 18)}}的其他基金

Experimental Study of Quantum Jumps with a Single Trapped Ion
单俘获离子量子跃迁的实验研究
  • 批准号:
    2308999
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Experimental Study of Quantum Jumps with a Single Trapped Ion
单俘获离子量子跃迁的实验研究
  • 批准号:
    2011503
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Remote Entanglement of Trapped Ions and Loophole-Free Bell Inequality
俘获离子的远程纠缠和无漏洞贝尔不等式
  • 批准号:
    1505326
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Ultrafast quantum logic gates with trapped ions
具有捕获离子的超快量子逻辑门
  • 批准号:
    0904004
  • 财政年份:
    2009
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
MRI: Development of a passive phase-stabilized femtosecond laser system for spatio-temopral imaging and frequency metrology in the infrared
MRI:开发用于红外时空成像和频率计量的被动相位稳定飞秒激光系统
  • 批准号:
    0923417
  • 财政年份:
    2009
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Remote Entanglement of Trapped Ions and Loophole-Free Bell Inequality Tests
捕获离子的远程纠缠和无漏洞贝尔不等式测试
  • 批准号:
    0758025
  • 财政年份:
    2008
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum entanglement with atoms: from individual pairs to many-body systems
原子的量子纠缠:从个体对到多体系统
  • 批准号:
    FT220100670
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    ARC Future Fellowships
Study on CARS enhancement with quantum entanglement aiming at noninvasive glucose monitoring
针对无创血糖监测的量子纠缠CARS增强研究
  • 批准号:
    23K19224
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了