Reliability Prediction Based on Dynamic Data Collected with Modern Technology
基于现代技术采集的动态数据的可靠性预测
基本信息
- 批准号:1068933
- 负责人:
- 金额:$ 21.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to develop a general framework that can incorporate large-scale dynamic data to obtain more accurate reliability predictions. Modern technology, such as smart-chips, sensors and wireless networks, has changed data collection processes. There are more and more products installed with automatic data-collecting devices (ADCDs) which can dynamically record system performance, usage and environmental information for individual units in the field and/or transmit this information to data centers with owner's permissions. These products range from jet engines, wind turbines, power transformers and CAT scanners, to automobiles, copier machines and smart-phones. This research will first develop general models for incorporating dynamic data into predictions. Then methods will be developed for quantifying statistical uncertainties and advantage of using dynamic data. Sensitivity analysis will be conducted to assess model uncertainties. Computationally efficient algorithms and free software that is capable of processing large-scale datasets will also be developed. The developed methods will be validated with datasets from industrial and government partners.If successful, this research will provide a much-needed new paradigm for the arriving generation of field reliability data. In the near future when the cost of ADCDs further decreases, more and more products will be equipped with ADCDs. This research will have applications in various important areas such as manufacturing, renewable energy, and health care, because reliability information is critical for manufacturers to improve the competitive position of their products, and is also important for cost analysis, capital expenditures, and risk controls. The development of free software will make it possible for the developed methods to be widely disseminated. Graduate and undergraduate students from under-represented groups and women will be involved in this research. The integration of research with teaching will present students with modern reliability data analysis concepts and techniques.
该奖项的研究目标是开发一个通用框架,可以将大规模的动态数据,以获得更准确的可靠性预测。智能芯片、传感器和无线网络等现代技术已经改变了数据收集过程。越来越多的产品安装了自动数据收集设备(ADCD),可以动态记录现场各个单元的系统性能、使用情况和环境信息,并/或在拥有者许可的情况下将这些信息传输到数据中心。这些产品包括喷气发动机、风力涡轮机、电力变压器和CAT扫描仪,以及汽车、复印机和智能手机。这项研究将首先开发将动态数据纳入预测的通用模型。然后将开发方法来量化统计的不确定性和使用动态数据的优势。将进行敏感度分析,以评估模型的不确定性。还将开发能够处理大规模数据集的计算效率高的算法和免费软件。所开发的方法将与来自工业和政府合作伙伴的数据集进行验证。如果成功,这项研究将为现场可靠性数据的生成提供急需的新范式。在不久的将来,当ADCD的成本进一步降低时,将有越来越多的产品配备ADCD。这项研究将在制造业、可再生能源和医疗保健等各个重要领域得到应用,因为可靠性信息对于制造商提高其产品的竞争地位至关重要,对于成本分析、资本支出和风险控制也很重要。自由软件的发展将使所开发的方法得以广泛传播。来自代表性不足群体和妇女的研究生和本科生将参与这项研究。研究与教学的整合将为学生提供现代可靠性数据分析的概念和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yili Hong其他文献
On Computing the Distribution Function for the Sum of Independent and Non-identical Random Indicators Yili Hong
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yili Hong - 通讯作者:
Yili Hong
Motivating User-Generated Content with Performance Feedback: Evidence from Randomized Field Experiments
通过性能反馈激励用户生成的内容:来自随机现场实验的证据
- DOI:
10.2139/ssrn.2971783 - 发表时间:
2017-05 - 期刊:
- 影响因子:5.4
- 作者:
Ni Huang;Gordon Burtch;Bin Gu;Yili Hong;Chen Liang;Kanliang Wang;Dongpu Fu;Bo Yang - 通讯作者:
Bo Yang
Product Component Genealogy Modeling and Field‐failure Prediction
产品组件谱系建模和现场故障预测
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.3
- 作者:
Caleb King;Yili Hong;W. Meeker - 通讯作者:
W. Meeker
User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community
开放创新社区中的用户创意实施:来自新产品开发众包社区的证据
- DOI:
10.1111/isj.12286 - 发表时间:
2020-03 - 期刊:
- 影响因子:6.4
- 作者:
Qian Liu;Qianzhou Du;Yili Hong;Weiguo Fan;Shuang Wu - 通讯作者:
Shuang Wu
Effective Nonparametric Distribution Modeling for Distribution Approximation Applications
分布近似应用的有效非参数分布建模
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
T. Lux;L. Watson;Tyler H. Chang;Li Xu;Yueyao Wang;Jon Bernard;Yili Hong;K. Cameron - 通讯作者:
K. Cameron
Yili Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yili Hong', 18)}}的其他基金
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
- 批准号:
2404998 - 财政年份:2024
- 资助金额:
$ 21.02万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in DRMS: Expectation Bias and the Gender Wage Gap in the Online Gig Economy
DRMS 博士论文研究:在线零工经济中的期望偏差和性别工资差距
- 批准号:
1824432 - 财政年份:2018
- 资助金额:
$ 21.02万 - 项目类别:
Standard Grant
相似海外基金
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
$ 21.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 21.02万 - 项目类别:
EU-Funded
Multi-variable based vegetation monitoring and prediction during droughts
干旱期间基于多变量的植被监测与预测
- 批准号:
FT230100209 - 财政年份:2024
- 资助金额:
$ 21.02万 - 项目类别:
ARC Future Fellowships
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 21.02万 - 项目类别:
Research Grant
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 21.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
- 批准号:
23K08495 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
- 批准号:
10765218 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Utility and feasibility of activity type to augment consumer wearable-based physical activity energy expenditure prediction equations using heartrate and movement in children
使用儿童心率和运动来增强基于消费者可穿戴设备的身体活动能量消耗预测方程的活动类型的实用性和可行性
- 批准号:
10677143 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Prediction of Deterioration of Tuff Stones Used for Building Exterior Based on Thermal Moisture Stress Analysis
基于热湿应力分析的建筑外墙凝灰岩劣化预测
- 批准号:
23K04152 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)