Geometry, Representation theory, and the Langlands program
几何、表示论和朗兰兹纲领
基本信息
- 批准号:1069316
- 负责人:
- 金额:$ 15.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-15 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project makes use of and develops geometric methods to attack several longstanding problems on: systems of differential equations, representation theory of Lie groups, and the Langlands program. It has been understood for a long time that (special) functions, in generalized sense, can be studied in terms of the systems of differential equations that they satisfy. To this end, a general theory of systems of linear differential equations was developed by the Sato school in Kyoto. This point of view, in its various incarnations, is now ubiquitous in mathematics. The PI, jointly with Masaki Kashiwara, has solved the key longstanding problem in this area, the codimension three conjecture. Kashiwara and the PI will continue their collaboration towards a comprehensive understanding of holonomic regular microdifferential systems. These are the systems that most often come up in applications to other areas. The Langlands program provides means of relating areas of mathematics that often do not have a straightforward direct relationship. It implements this relationship via the symmetries of the theories by exhibiting a relationship between their representations. A major area of this proposal is the theory of real groups. Real groups are the fundamental symmetries that occur both in number theory and physics. A key outstanding question in representation theory of real groups is the determination of the particularly important class of unitary representations . Wilfried Schmid and the PI have made far-reaching conjectures which put this question in a general mathematical context phrasing the problem in terms of Hodge theory. They are on their way to settling these conjectures and the structures of the unitary dual. The PI also proposes, in joint work with Roman Bezrukavnikov, to prove a categorical Langlands duality for real groups. Differential equations are used to model various phenomena in nature. One major aspect of this project aims at a comprehensive understanding of an important class of systems of differential equations. Lie groups are the fundamental symmetries that occur in nature. They are important both in physics and number theory. A key question is to understand where these symmetries occur and it what form they occur. The second major aspect of this project will answer this question in terms of basic geometric structures called Hodge structures.
该项目利用和发展几何方法来解决几个长期存在的问题:微分方程系统,李群表示论和朗兰兹程序。长期以来,人们一直认为(特殊)函数在广义上可以用它们所满足的微分方程组来研究。为此,一般理论系统的线性微分方程是由佐藤学校在京都。这种观点,以其各种形式,现在在数学中无处不在。PI与Masaki Kashiwara一起解决了这一领域长期存在的关键问题,即余维3猜想。柏原和PI将继续他们的合作,以全面了解完整的定期微微分系统。这些系统在其他领域的应用中最常出现。朗兰兹纲领提供了联系数学领域的方法,这些领域通常没有直接的关系。它通过理论的对称性来实现这种关系,表现出它们的表示之间的关系。这一建议的一个主要领域是理论的真实的团体。真实的群是数论和物理学中的基本对称。真实的群的表示论中一个关键的突出问题是确定特别重要的酉表示类。Wilfried Schmid和PI已经做出了意义深远的解释,将这个问题置于一般的数学背景下,用Hodge理论来表述这个问题。他们正在解决这些问题和单一对偶的结构。PI还建议,在联合工作与罗马Bezrukavnikov,以证明一个明确的朗兰兹对偶的真实的群体。微分方程用于模拟自然界中的各种现象。这个项目的一个主要方面旨在全面了解一类重要的微分方程系统。李群是自然界中最基本的对称性。它们在物理学和数论中都很重要。一个关键的问题是要理解这些对称性在哪里发生,以及它们以什么形式发生。这个项目的第二个主要方面将回答这个问题的基本几何结构称为霍奇结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kari Vilonen其他文献
Characteristic varieties of character sheaves
字符滑轮的特色品种
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Ivan Mirković;Kari Vilonen - 通讯作者:
Kari Vilonen
Kari Vilonen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kari Vilonen', 18)}}的其他基金
Geometry, Representation theory, and Langlands duality
几何、表示论和朗兰兹对偶
- 批准号:
1402928 - 财政年份:2014
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Topological Methods in Representation Theory and Automorphic Forms
表示论和自守形式中的拓扑方法
- 批准号:
0105256 - 财政年份:2001
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Topological Methods in Representation Theory and Automorphic Forms
表示论和自守形式中的拓扑方法
- 批准号:
0196077 - 财政年份:2000
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Topological Techniques for Computing with Perverse Sheaves
反常滑轮计算的拓扑技术
- 批准号:
9971030 - 财政年份:1999
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Topological Methods in Representation Theory and Automorphic Forms
表示论和自守形式中的拓扑方法
- 批准号:
9803862 - 财政年份:1998
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Automorphic Forms
数学科学:自守形式的几何
- 批准号:
9423758 - 财政年份:1995
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Methods in Representation Theory and Automorphic Forms
数学科学:表示论和自守形式中的拓扑方法
- 批准号:
9504299 - 财政年份:1995
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topological Methods in RepresentationTheory and Automorphic Forms
数学科学:表示论和自守形式中的拓扑方法
- 批准号:
9203756 - 财政年份:1992
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Perverse Sheaves, D-Modules and Their Applications
数学科学:反常滑轮、D 模及其应用
- 批准号:
9002695 - 财政年份:1990
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Perverse Sheaves and D-Modules
数学科学:反常滑轮和 D 模的应用
- 批准号:
8611333 - 财政年份:1986
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
相似海外基金
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 15.68万 - 项目类别:
Research Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 15.68万 - 项目类别:
Postdoctoral Fellowships
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 15.68万 - 项目类别:
Research Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/1 - 财政年份:2022
- 资助金额:
$ 15.68万 - 项目类别:
Research Grant
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
RGPIN-2022-03135 - 财政年份:2022
- 资助金额:
$ 15.68万 - 项目类别:
Discovery Grants Program - Individual
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
DGECR-2022-00437 - 财政年份:2022
- 资助金额:
$ 15.68万 - 项目类别:
Discovery Launch Supplement