Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
基本信息
- 批准号:2401178
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geometric representation theory and symplectic geometry are two subjects of central interest in current mathematics. They draw original inspiration from mathematical physics, often in the form of quantum field theory and specifically the study of its symmetries. This has been an historically fruitful direction guided by dualities that generalize Fourier theory. The research in this project involves a mix of pursuits, including the development of new tools and the solution of open problems. A common theme throughout is finding ways to think about intricate geometric systems in elementary combinatorial terms. The research also offers opportunities for students entering these subjects to make significant contributions by applying recent tools and exploring new approaches. Additional activities include educational and expository writing on related topics, new interactions between researchers in mathematics and physics, and continued investment in public engagement with mathematics.The specific projects take on central challenges in supersymmetric gauge theory, specifically about phase spaces of gauge fields, their two-dimensional sigma-models, and higher structures on their branes coming from four-dimensional field theory. The main themes are the cocenter of the affine Hecke category and elliptic character sheaves, local Langlands equivalences and relative Langlands duality, and the topology of Lagrangian skeleta of Weinstein manifolds. The primary goals of the project include an identification of the cocenter of the affine Hecke category with elliptic character sheaves as an instance of automorphic gluing, the application of cyclic symmetries of Langlands parameter spaces to categorical forms of the Langlands classification, and a comparison of polarized Weinstein manifolds with arboreal spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何表示论和辛几何是当前数学中的两个重要课题。他们从数学物理学中汲取原始灵感,通常以量子场论的形式,特别是对其对称性的研究。这是一个历史上富有成果的方向,由推广傅立叶理论的对偶指导。该项目的研究涉及多种追求,包括开发新工具和解决开放问题。一个贯穿始终的共同主题是找到用初等组合术语思考复杂几何系统的方法。这项研究还为进入这些学科的学生提供了机会,使他们能够通过应用最新的工具和探索新的方法做出重大贡献。其他活动包括相关主题的教育和学术写作,数学和物理研究人员之间的新互动,以及对数学公众参与的持续投资。具体项目承担超对称规范理论的核心挑战,特别是关于规范场的相空间,二维sigma模型,以及来自四维场论的膜上的更高结构。主要的主题是仿射Hecke范畴的余中心和椭圆特征层,局部Langlands等价和相对Langlands对偶,以及Weinstein流形的Lagrangian拓扑。该项目的主要目标包括识别仿射Hecke范畴与椭圆特征层的共中心作为自守胶合的实例,Langlands参数空间的循环对称性应用于Langlands分类的范畴形式,以及偏振Weinstein流形与树空间的比较。该奖项反映了NSF的法定使命,并通过评估被认为值得支持使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Nadler其他文献
A combinatorial calculation of the Landau–Ginzburg model $$M={\mathbb {C}}^{3},W=z_1 z_2 z_3$$
- DOI:
10.1007/s00029-016-0254-x - 发表时间:
2016-08-09 - 期刊:
- 影响因子:1.200
- 作者:
David Nadler - 通讯作者:
David Nadler
David Nadler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Nadler', 18)}}的其他基金
Lagrangian Skeleta in Symplectic Geometry and Representation Theory
辛几何与表示论中的拉格朗日骨架
- 批准号:
2101466 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Singularities and Sheaves in Symplectic Geometry and Geometric Representation Theory
辛几何和几何表示理论中的奇点和滑轮
- 批准号:
1802373 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
- 批准号:
1342948 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
- 批准号:
1319287 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
- 批准号:
1201319 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
- 批准号:
1160227 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Representation theory via topological field theory
通过拓扑场论的表示论
- 批准号:
0901114 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Perverse Sheaves in Representation Theory
表示论中的反常滑轮
- 批准号:
0600909 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Lagrangian Skeleta in Symplectic Geometry and Representation Theory
辛几何与表示论中的拉格朗日骨架
- 批准号:
2101466 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Cluster Algebras in Representation Theory and Symplectic Geometry
表示论和辛几何中的簇代数
- 批准号:
2043079 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
- 批准号:
20K03507 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli Spaces in Representation Theory and Symplectic Algebraic Geometry
表示论和辛代数几何中的模空间
- 批准号:
1802094 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
- 批准号:
1854232 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Singularities and Sheaves in Symplectic Geometry and Geometric Representation Theory
辛几何和几何表示理论中的奇点和滑轮
- 批准号:
1802373 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Cluster Algebras in Representation Theory and Symplectic Geometry
表示论和辛几何中的簇代数
- 批准号:
1702489 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
- 批准号:
1710481 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Cluster Algebras in Representation Theory and Symplectic Geometry
表示论和辛几何中的簇代数
- 批准号:
1801969 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant