Operator Algebras and Topological Invariants
算子代数和拓扑不变量
基本信息
- 批准号:1101305
- 负责人:
- 金额:$ 31.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is guided by the premise that the ideas and the methods of algebraic topology, understood in a broad sense, will continue to play a key role in the study of operator algebras. The underlying theme of the research is to devise new techniques and tools in the deformation theory of operator algebras. The idea of deformations of algebras is intimately related to K-theory, as is revealed by the development of E-theory. In particular one can read the K-homology of a locally compact connected space X from matricial deformations of the algebra of continuous functions on X. In what may be regarded as a counterpart of this property in condensed-matter physics, Kitaev has proposed very recently a classification of topological insulators that is based on real K-homology and that relies ultimately on a classification up to approximate unitary equivalence of matricial deformations of spaces. A first objective of the project is to study invariants of C*-algebras that integrate the primitive spectrum along with homological invariants. This is naturally tied to the idea of deformation and the theory of continuous fields and will involve the study of KK-theory and E-theory parametrized by spaces that are not necessarily Hausdorff. A second objective is to investigate the existence of deformations of group C*-algebras into matrix algebras with the property that they detect the K-theory of the group C*-algebras. In addition, the principal investigator aims to provide formulas for computing invariants associated with these deformations. A third objective is to study invariants of simple C*-algebras that capture properties not detected by K-theory or tracial states. In particular, the project will investigate rigidity properties of simple C*-algebras.The physics of elementary particles has led to new mathematical theories in which numerical functions are replaced with infinite arrays of numbers or matrices. Matrices can be multiplied, but unlike numerical multiplication, the order of the factors is essential, so that A times B is not always equal to B times A. This property of matrix multiplication, called noncommutativity, is crucial for the interpretation of very complex phenomena in quantum mechanics that might initially appear completely counter-intuitive (e.g., Heisenberg's uncertainty principle). The passage from numbers to matrices often involves a process of deformation in which spatial structures are discretized in such a way that the possible twists of surfaces (or even more complicated objects) are captured in the form of numerical invariants. This project is concerned with the theory of such deformations and connects classical geometry with noncommutative geometry, a theory that proposes a reconstruction of the general concept of space that is better aligned with the principles of quantum physics than is traditional geometry. Moreover, the deformation theory that the principal investigator will study provides mathematical tools relevant to physical phenomena that are observed in certain special materials. These materials behave as insulators in their interiors, while permitting the movement of charges on their surfaces, due to exotic metallic states localized there. Such remarkable new materials, known as "topological insulators," have already had a considerable impact on condensed matter physics and are expected to find technological applications in magneto-electronics, an emerging field in which spin currents are used instead of charge currents, and in quantum computing.
这个项目的前提是,代数拓扑的思想和方法,从广义上理解,将继续在算子代数的研究中发挥关键作用。本研究的基本主题是在算子代数的变形理论中设计新的技术和工具。代数变形的思想与k理论密切相关,e理论的发展揭示了这一点。特别地,我们可以从X上连续函数代数的材料变形中读出局部紧连空间X的k -同调。这可以看作是凝聚态物理中这一性质的对应物,Kitaev最近提出了一种基于真实k -同调的拓扑绝缘子分类,它最终依赖于空间材料变形的近似幺正等价的分类。该项目的第一个目标是研究C*-代数的不变量,它将原始谱与同调不变量整合在一起。这自然与变形的概念和连续场理论联系在一起,并将涉及到kk理论和e理论的研究,这些理论被不一定是Hausdorff的空间参数化。第二个目标是研究群C*-代数的变形成矩阵代数的存在性,这些变形具有检测群C*-代数的k理论的性质。此外,主要研究者旨在提供计算与这些变形相关的不变量的公式。第三个目标是研究简单C*-代数的不变量,这些不变量捕获了k理论或迹迹状态无法检测到的特性。特别是,该项目将研究简单C*-代数的刚性性质。基本粒子的物理学导致了新的数学理论,其中数值函数被无限的数字或矩阵阵列所取代。矩阵可以相乘,但与数值乘法不同,因子的顺序是必不可少的,因此A乘以B并不总是等于B乘以A。矩阵乘法的这种性质称为非交换性,对于解释量子力学中非常复杂的现象至关重要,这些现象最初可能看起来完全违反直觉(例如,海森堡的测不确定性原理)。从数字到矩阵的转换通常涉及到一个变形过程,在这个过程中,空间结构以这样一种方式离散化,即表面(甚至更复杂的物体)的可能扭曲以数值不变量的形式被捕获。该项目关注的是这种变形的理论,并将经典几何与非对易几何联系起来,非对易几何提出了空间一般概念的重建,比传统几何更符合量子物理原理。此外,首席研究员将研究的变形理论提供了与在某些特殊材料中观察到的物理现象相关的数学工具。这些材料在其内部表现为绝缘体,同时允许电荷在其表面上运动,由于外来的金属态定位在那里。这种非凡的新材料,被称为“拓扑绝缘体”,已经对凝聚态物理产生了相当大的影响,并有望在磁电子学(一个使用自旋电流代替电荷电流的新兴领域)和量子计算中找到技术应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Dadarlat其他文献
On the asymptotic homotopy type of inductive limitC *-algebras
- DOI:
10.1007/bf01459523 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Marius Dadarlat - 通讯作者:
Marius Dadarlat
Deformations of nilpotent groups and homotopy symmetric $$C^*$$ -algebras
- DOI:
10.1007/s00208-016-1379-0 - 发表时间:
2016-02-13 - 期刊:
- 影响因子:1.400
- 作者:
Marius Dadarlat;Ulrich Pennig - 通讯作者:
Ulrich Pennig
One-Parameter Continuous Fields of Kirchberg Algebras
- DOI:
10.1007/s00220-007-0298-z - 发表时间:
2007-07-17 - 期刊:
- 影响因子:2.600
- 作者:
Marius Dadarlat;George A. Elliott - 通讯作者:
George A. Elliott
Marius Dadarlat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Dadarlat', 18)}}的其他基金
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
Operator Algebras, Groups, and Topological Invariants
算子代数、群和拓扑不变量
- 批准号:
1700086 - 财政年份:2017
- 资助金额:
$ 31.96万 - 项目类别:
Continuing Grant
C*-algebras, Groups, and Topological Invariants
C*-代数、群和拓扑不变量
- 批准号:
1362824 - 财政年份:2014
- 资助金额:
$ 31.96万 - 项目类别:
Continuing Grant
Operator Algebras, K-theory and Groups
算子代数、K 理论和群
- 批准号:
0500693 - 财政年份:2005
- 资助金额:
$ 31.96万 - 项目类别:
Continuing Grant
C*-Algebras, K-theory and Groups
C*-代数、K 理论和群
- 批准号:
0200601 - 财政年份:2002
- 资助金额:
$ 31.96万 - 项目类别:
Continuing Grant
Research on the Classification of Nuclear C*-Algebras
核C*代数的分类研究
- 批准号:
9970223 - 财政年份:1999
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
Dissertation Enhancement: Noncommutative Dynamical Systems
论文增强:非交换动力系统
- 批准号:
9802696 - 财政年份:1998
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants of C*-Algebras
数学科学:C*-代数的不变量
- 批准号:
9622434 - 财政年份:1996
- 资助金额:
$ 31.96万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Invariants of Operator Algebras"
数学科学:“算子代数不变量”
- 批准号:
9303361 - 财政年份:1993
- 资助金额:
$ 31.96万 - 项目类别:
Continuing Grant
相似海外基金
Interactions between operator algebras and topological dynamics
算子代数与拓扑动力学之间的相互作用
- 批准号:
2750740 - 财政年份:2022
- 资助金额:
$ 31.96万 - 项目类别:
Studentship
Interacting topological phases and operator algebras
相互作用的拓扑相和算子代数
- 批准号:
19K14548 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Operator Algebras, Groups, and Topological Invariants
算子代数、群和拓扑不变量
- 批准号:
1700086 - 财政年份:2017
- 资助金额:
$ 31.96万 - 项目类别:
Continuing Grant
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2011
- 资助金额:
$ 31.96万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2010
- 资助金额:
$ 31.96万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2010
- 资助金额:
$ 31.96万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2009
- 资助金额:
$ 31.96万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2009
- 资助金额:
$ 31.96万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2008
- 资助金额:
$ 31.96万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2008
- 资助金额:
$ 31.96万 - 项目类别:
Discovery Grants Program - Individual