Operator Algebras, K-theory and Groups
算子代数、K 理论和群
基本信息
- 批准号:0500693
- 负责人:
- 金额:$ 27.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-03-01 至 2009-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research conducted in the last ten years has revealed unexpected rigidity properties of noncommutative C*-algebras. Whereas the cohomological invariants of a space (commutative C*-algebra) will determine the space at most up to homotopy equivalence, in the class of nuclear simple C*-algebras, the objects are often determined up to isomorphism by their K-theoretical invariants. Elliott's conjecture states that, far from being an accident, this is always the case for the entire class of separable nuclear simple C*-algebras. (Tracial invariants are needed if the real rank is nonzero.) The proposed research aims to uncover and explain rigidity properties of nuclear C*-algebras. The basic idea beyond the classification program is that that the simplicity and the stable or real rank conditions for a nuclear C*-algebra translate to certain internal dynamical properties of the algebra which forces a behavior typical to that of a combinatorial object. The C*-algebra becomes a rigid object built around its K-theory skeleton. The ramifications of the classification theory into the structure theory of C*-algebras will be explored with emphasis on dynamical systems and group C*-algebras. The investigator will analyze the impact of the recent advances around the Baum-Connes conjecture on the classification theory with the long term goal of formulating and exploring a Baum-Connes type conjecture for general nuclear C*-algebras. This is closely tied with the universal coefficient theorem problem in KK-theory and deformation theory of C*-algebras.Geometry was developed in an attempt to describe the ambient physical space. Its history has seen a series of remarkable achievements from the Euclidian geometry to the non-Euclidian geometries which culminated with the Riemannian geometry providing a successful model for large-scale spacetime in general relativity. The noncommutative geometry of Alain Connes is a far reaching generalization of the Riemannian geometry, well adapted for the study of a variety of large and small scale structures. The theory can be viewed as a significant development in the quest of quantizing of mathematics following the successful quantization of physics. As in quantum physics, the coordinates in this theory are no longer ordinary numbers but noncommuting operators acting on infinite dimensional Hilbert spaces. The ordinary spaces are being replaced by algebras of operators. The proposed project aims to contribute to the extensive effort of a community of researchers to extend the mathematics of commutative spaces to operator algebras.
近十年来的研究揭示了非交换C*-代数的意外刚性性质。虽然空间(交换C*-代数)的上同调不变量至多决定空间的同伦等价,但在核单C*-代数类中,对象通常由它们的K-理论不变量确定为同构。埃利奥特的猜想指出,这远非偶然,而是整个可分核单C*-代数的情形。(如果实数秩非零,则需要轨迹不变量。)本研究旨在揭示和解释核C*-代数的刚性性质。分类程序之外的基本思想是,核C*-代数的简单性和稳定或真实的秩条件转化为该代数的某些内部动力学性质,从而迫使组合对象的典型行为。C*-代数成为围绕其K-理论骨架构建的刚性对象。分类理论在C*-代数的结构理论中的分支将被重点放在动力系统和群C*-代数上。研究人员将分析围绕Baum-Connes猜想的最新进展对分类理论的影响,长期目标是建立和探索一般核C*-代数的Baum-Connes型猜想。这与KK-理论中的泛系数定理问题和C*-代数的形变理论密切相关。几何是为了描述环境物理空间而发展起来的。它的历史见证了从欧几里得几何到非欧几里得几何的一系列显着成就,最终以黎曼几何为广义相对论中的大尺度时空提供了一个成功的模型。Alain Connes的非对易几何是黎曼几何的一个深远的推广,非常适合于研究各种大小尺度的结构。这一理论可以被视为继物理学量子化之后,在数学量子化方面的一项重大发展。正如在量子物理学中一样,这个理论中的坐标不再是普通的数字,而是作用于无限维希尔伯特空间的非对易算子。普通空间正在被算子的代数所取代。这项拟议的项目旨在促进一个研究团体的广泛努力,将交换空间的数学扩展到算子代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Dadarlat其他文献
On the asymptotic homotopy type of inductive limitC *-algebras
- DOI:
10.1007/bf01459523 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Marius Dadarlat - 通讯作者:
Marius Dadarlat
Deformations of nilpotent groups and homotopy symmetric $$C^*$$ -algebras
- DOI:
10.1007/s00208-016-1379-0 - 发表时间:
2016-02-13 - 期刊:
- 影响因子:1.400
- 作者:
Marius Dadarlat;Ulrich Pennig - 通讯作者:
Ulrich Pennig
One-Parameter Continuous Fields of Kirchberg Algebras
- DOI:
10.1007/s00220-007-0298-z - 发表时间:
2007-07-17 - 期刊:
- 影响因子:2.600
- 作者:
Marius Dadarlat;George A. Elliott - 通讯作者:
George A. Elliott
Marius Dadarlat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Dadarlat', 18)}}的其他基金
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Operator Algebras, Groups, and Topological Invariants
算子代数、群和拓扑不变量
- 批准号:
1700086 - 财政年份:2017
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
C*-algebras, Groups, and Topological Invariants
C*-代数、群和拓扑不变量
- 批准号:
1362824 - 财政年份:2014
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
Operator Algebras and Topological Invariants
算子代数和拓扑不变量
- 批准号:
1101305 - 财政年份:2011
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
C*-Algebras, K-theory and Groups
C*-代数、K 理论和群
- 批准号:
0200601 - 财政年份:2002
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
Research on the Classification of Nuclear C*-Algebras
核C*代数的分类研究
- 批准号:
9970223 - 财政年份:1999
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Dissertation Enhancement: Noncommutative Dynamical Systems
论文增强:非交换动力系统
- 批准号:
9802696 - 财政年份:1998
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants of C*-Algebras
数学科学:C*-代数的不变量
- 批准号:
9622434 - 财政年份:1996
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Invariants of Operator Algebras"
数学科学:“算子代数不变量”
- 批准号:
9303361 - 财政年份:1993
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2022
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2022
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual
Operator Theory and Operator Algebras
算子理论和算子代数
- 批准号:
RGPIN-2020-03984 - 财政年份:2022
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2022
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2022
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual
Model theory and operator algebras
模型理论和算子代数
- 批准号:
RGPIN-2018-05445 - 财政年份:2022
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2021
- 资助金额:
$ 27.52万 - 项目类别:
Discovery Grants Program - Individual