Operator Algebras, Groups, and Topological Invariants
算子代数、群和拓扑不变量
基本信息
- 批准号:1700086
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three projects concerned with analytical and topological aspects of operator algebras are to be investigated. Operator algebras is an area of mathematics that emerged from the matrix mechanics formulation of quantum mechanics discovered by Heisenberg and further developed by von Neumann. The new (quantum) variables used in this theory are ensembles of (possibly infinite) matrices that satisfy suitable regularity properties. They are organized in various algebraic structures, called operator algebras, that can realized as linear operators acting on Hilbert spaces. The passage from functions to matrices often involves a process of quantization/deformation in which geometric structures are discretized in such a way that important topological spatial relations are distilled in the form of numerical invariants. The principal investigator will explore the theory of such deformations in the larger context of operator algebras. The goal is to exhibit and study new classes of algebraic and geometric structures which admit special deformations into finite matrices that capture subtle topological properties. The invariants that are to be investigated are intimately related to those that arise in the physics of novel materials such as topological insulators with crystalline symmetry.In more technical terms, the purpose of the first project is to explore the class of connective C*-algebras. Connectivity is a homotopy invariant property with significant permanence properties. It has important consequences pertaining to absence of projections, finite dimensional approximations such as quasidiagonality, and geometric realizations of K-homology. The second project is devoted to embeddability into AF-algebras. The principal investigator will investigate K-theory invariants associated to quasi-representations and topological obstructions to quasidiagonality. For the third project, the principal investigator will explore characteristic classes of continuous fields of strongly self-absorbing C*-algebras in the framework of the generalized Dixmier-Douady theory that were developed with Ulrich Pennig.
三个项目涉及算子代数的分析和拓扑方面的研究。算符代数是一个数学领域,从海森堡发现的量子力学的矩阵力学公式中出现,并由冯·诺伊曼进一步发展。该理论中使用的新(量子)变量是满足适当正则性的(可能是无限的)矩阵的集合。它们被组织成各种代数结构,称为算子代数,可以实现为作用于希尔伯特空间的线性算子。从函数到矩阵的过渡通常涉及到一个量化/变形的过程,在这个过程中,几何结构被离散化,重要的拓扑空间关系被提炼成数值不变量的形式。首席研究员将在算子代数的大背景下探索这种变形的理论。目标是展示和研究新的代数和几何结构类别,这些结构允许特殊变形为有限矩阵,从而捕获微妙的拓扑特性。所要研究的不变量与新材料物理学中出现的不变量密切相关,例如具有晶体对称性的拓扑绝缘体。用更专业的术语来说,第一个项目的目的是探索一类连接C*-代数。连通性是一个具有显著持久性的同伦不变性质。它在缺乏投影、有限维近似(如拟对角性)和k -同调的几何实现方面具有重要的意义。第二个项目致力于嵌入af -代数。主要研究者将研究与拟表示和拟对角的拓扑障碍相关的k理论不变量。对于第三个项目,首席研究员将在与Ulrich Pennig共同开发的广义Dixmier-Douady理论的框架下探索强自吸收C*-代数的连续场的特征类。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Connective Bieberbach groups
连接比伯巴赫组
- DOI:10.1142/s0129167x20500470
- 发表时间:2020
- 期刊:
- 影响因子:0.6
- 作者:Dadarlat, Marius;Weld, Ellen
- 通讯作者:Weld, Ellen
AF-embeddings of residually finite-dimensional C*-algebras
剩余有限维 C* 代数的 AF 嵌入
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dadarlat, Marius
- 通讯作者:Dadarlat, Marius
On asymptotic stability of connective groups
论联结群的渐近稳定性
- DOI:10.2969/aspm/08010000
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dadarlat, Marius
- 通讯作者:Dadarlat, Marius
Localization C∗-algebras and K-theoreticduality
本地化 C-代数和 K-理论对偶性
- DOI:10.2140/akt.2018.3.615
- 发表时间:2018
- 期刊:
- 影响因子:0.6
- 作者:Dadarlat, Marius;Willett, Rufus;Wu, Jianchao
- 通讯作者:Wu, Jianchao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Dadarlat其他文献
On the asymptotic homotopy type of inductive limitC *-algebras
- DOI:
10.1007/bf01459523 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Marius Dadarlat - 通讯作者:
Marius Dadarlat
Deformations of nilpotent groups and homotopy symmetric $$C^*$$ -algebras
- DOI:
10.1007/s00208-016-1379-0 - 发表时间:
2016-02-13 - 期刊:
- 影响因子:1.400
- 作者:
Marius Dadarlat;Ulrich Pennig - 通讯作者:
Ulrich Pennig
One-Parameter Continuous Fields of Kirchberg Algebras
- DOI:
10.1007/s00220-007-0298-z - 发表时间:
2007-07-17 - 期刊:
- 影响因子:2.600
- 作者:
Marius Dadarlat;George A. Elliott - 通讯作者:
George A. Elliott
Marius Dadarlat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Dadarlat', 18)}}的其他基金
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
C*-algebras, Groups, and Topological Invariants
C*-代数、群和拓扑不变量
- 批准号:
1362824 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Operator Algebras and Topological Invariants
算子代数和拓扑不变量
- 批准号:
1101305 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Operator Algebras, K-theory and Groups
算子代数、K 理论和群
- 批准号:
0500693 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Research on the Classification of Nuclear C*-Algebras
核C*代数的分类研究
- 批准号:
9970223 - 财政年份:1999
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Dissertation Enhancement: Noncommutative Dynamical Systems
论文增强:非交换动力系统
- 批准号:
9802696 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants of C*-Algebras
数学科学:C*-代数的不变量
- 批准号:
9622434 - 财政年份:1996
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Invariants of Operator Algebras"
数学科学:“算子代数不变量”
- 批准号:
9303361 - 财政年份:1993
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似海外基金
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
- 批准号:
21K03195 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
- 批准号:
20K03505 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras, Groups, and Applications to Quantum Information
算子代数、群以及在量子信息中的应用
- 批准号:
1901290 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual