Spherical varieties in the Langlands program

朗兰兹计划中的球形品种

基本信息

  • 批准号:
    1101471
  • 负责人:
  • 金额:
    $ 11.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to investigate various aspects of the relationship between spherical varieties and the Langlands program. It is motivated by recent conjectures relating periods of automorphic forms over spherical subgroups to Euler products of functionals arising from the Plancherel formula of a spherical variety, and expressing the support of Plancherel measure in terms of Arthur parameters. A major part of the project is devoted to creating trace formula-theoretic tools, both locally and globally, necessary to put the conjectures in the correct setting, to clarify some aspects and to prove particular instances of them. Other parts include extending previous harmonic-analytic results and developing a relative trace formula in specific cases in order to analyze the pertinent periods of automorphic forms.L-functions are very central objects in various branches of number theory, and there are strong conjectures and results (in and around the Langlands program) relating most of the interesting types of L-functions to those L-functions which are called automorphic. Automorphic L-functions are studied by constructions of global harmonic analysis, that is explicit integrals of functions on the quotient of a Lie group by a discrete, arithmetic subgroup, but these constructions remain mysterious after many decades of use. A lot of them involve spherical ("large") subgroups, and a general theory has started to emerge which connects global harmonic analysis to Euler products (and hence L-functions) via local harmonic analysis on spherical varieties. According to this theory, which for now is mostly conjectural, the local Langlands conjecture admits a generalization to the harmonic analysis of a spherical variety over a local field, where a "dual group" is attached to the spherical variety and describes the representations distinguished by it; and spherical periods of automorphic forms, satisfying certain assumptions, are eulerian in a very explicit way and, hence, related to L-functions or special values of those. This project aims at improving these conjectures and investigating ways for their proof, mainly by trace formula-theoretic techniques.
这个项目的目的是调查球形品种和朗兰兹计划之间的关系的各个方面。它的动机是最近的progratures有关的期间自守形式的球面子群欧拉产品的泛函所产生的Plancherel公式的球面品种,并表示支持Plancherel措施的亚瑟参数。该项目的一个主要部分是致力于创建跟踪公式理论工具,在本地和全球范围内,有必要把正确的设置,澄清一些方面,并证明他们的特定实例的结构。其他部分包括扩展以前的调和分析结果,并在特定情况下发展一个相对迹公式,以分析自守形式的相关周期。L-函数是数论各个分支中非常重要的对象,并且有强有力的图解和结果(在朗兰兹纲领中和周围)将大多数有趣的L-函数类型与称为自守的L-函数联系起来。自守L-函数是通过构造整体调和分析来研究的,即函数在李群的商上通过离散算术子群的显式积分,但这些构造在使用了几十年后仍然是神秘的。它们中的许多涉及球面(“大”)子群,并且已经开始出现一种通用理论,该理论通过球面簇的局部调和分析将全局调和分析与欧拉乘积(以及因此的L-函数)联系起来。根据这一理论,目前主要是理论性的,局部朗兰兹猜想承认推广到局部域上的球面簇的调和分析,其中一个“对偶群”附在球面簇上并描述由它区分的表示;满足某些假设的自守形式的球面周期是非常明确的欧拉周期,因此,与L-函数或其特殊值有关。本项目的目的是改进这些公式,并研究其证明方法,主要是利用迹公式理论技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ioannis Sakellaridis其他文献

Ioannis Sakellaridis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ioannis Sakellaridis', 18)}}的其他基金

Functoriality for Relative Trace Formulas
相对迹公式的函数性
  • 批准号:
    2401554
  • 财政年份:
    2024
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Continuing Grant
Geometric and Microlocal Study of Automorphic Periods
自守周期的几何和微局域研究
  • 批准号:
    2101700
  • 财政年份:
    2021
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Standard Grant
Trace Formulas and Relative Functoriality
迹公式和相对函数性
  • 批准号:
    1939672
  • 财政年份:
    2019
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Continuing Grant
Trace Formulas and Relative Functoriality
迹公式和相对函数性
  • 批准号:
    1801429
  • 财政年份:
    2018
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Continuing Grant
Foundations of the Relative Langlands Program
相关朗兰兹纲领的基础
  • 批准号:
    1502270
  • 财政年份:
    2015
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Standard Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Standard Grant
CAREER: Algebraicity and Integral Models of Shimura Varieties
职业:志村品种的代数性和积分模型
  • 批准号:
    2338942
  • 财政年份:
    2024
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Continuing Grant
Quasimaps to Nakajima Varieties
中岛品种的准地图
  • 批准号:
    2401380
  • 财政年份:
    2024
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Continuing Grant
Heritage Bilingualism in the UK: the case of mood selection in Spanish varieties of Latin America
英国的传统双语:拉丁美洲西班牙语品种的情绪选择案例
  • 批准号:
    2887167
  • 财政年份:
    2023
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Studentship
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
  • 批准号:
    BB/Y513672/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Training Grant
Prosodic Event Annotation and Detection in Three Varieties of English
三种英语韵律事件标注与检测
  • 批准号:
    2316030
  • 财政年份:
    2023
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Standard Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 11.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了