Collaborative Research: Stochastic Optimization and Coordination Control of Demand Response for Enhancing the Secure and Economic Operation of Power Systems

协作研究:需求响应随机优化与协调控制,增强电力系统安全经济运行

基本信息

  • 批准号:
    1102136
  • 负责人:
  • 金额:
    $ 7.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to explore novel demand response management models and robust solutions for both Aggregators of Retail Consumers and Independent System Operators, which enable demand response to become a resource for providing ancillary services and maintaining system security. The approach is to (1) establish an adaptive price-sensitive load forecasting model; (2) propose a risk-constrained stochastic demand response scheduling model for Aggregators of Retail Consumers; (3) construct a two-stage security-constrained stochastic scheduling model for Independent System Operators.Intellectual Merit: The demand response integration will be analyzed and quantified for minimizing daily operating costs, satisfying hourly security constraints, and accommodating uncertainties. This project is of practical importance since demand response is being implemented worldwide, and consumers will have opportunities to make distinctive contributions to energy security and environmental improvements in power system operation. The project team is qualified to perform the study and the research and educational facilities at Clarkson and Illinois Institute of Technology are adequate.Broader Impacts: This project has profound impacts with the increasing deployment of distributed generations and plug-in hybrid vehicles. The proposed integrated research and educational activities and the new course development on modern power system operation and control in smart grid will attract more students to seek careers in power engineering. Underrepresented students will be recruited to participate in various tasks of this research. This project will increase public awareness and understanding of the complexity of power system operation among ratepayers, regulators, politicians, utility executives, market participants, and electricity consumers.
本研究的目的是探索新的需求响应管理模型和强大的解决方案,为零售消费者和独立系统运营商的聚合器,使需求响应成为一种资源,提供辅助服务和维护系统安全。该方法是(1)建立一个自适应的价格敏感负荷预测模型;(2)提出一个风险约束的零售消费者聚合商随机需求响应调度模型;(3)建立一个两阶段安全约束的独立系统运营商随机调度模型。需求响应集成将被分析和量化,以最大限度地减少日常运营成本,满足小时安全约束,并适应不确定性。该项目具有实际意义,因为需求响应正在全球范围内实施,消费者将有机会为电力系统运行中的能源安全和环境改善做出独特的贡献。该项目团队有资格进行这项研究,在克拉克森和伊利诺伊理工学院的研究和教育设施是足够的。更广泛的影响:该项目具有深远的影响,随着分布式发电和插电式混合动力汽车的部署越来越多。建议的综合研究和教育活动以及智能电网中现代电力系统运行与控制的新课程开发将吸引更多的学生寻求电力工程职业。代表性不足的学生将被招募参加这项研究的各种任务。该项目将提高纳税人、监管机构、政治家、公用事业高管、市场参与者和电力消费者对电力系统运行复杂性的认识和理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zuyi Li其他文献

A compensation scheme for CVT transient effects using artificial neural network
  • DOI:
    10.1016/j.epsr.2006.12.006
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hassan Khorashadi Zadeh;Zuyi Li
  • 通讯作者:
    Zuyi Li
State identification of home appliance with transient features in residential buildings
  • DOI:
    10.1007/s11708-022-0822-z
  • 发表时间:
    2022-03-10
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Lei Yan;Runnan Xu;Mehrdad Sheikholeslami;Yang Li;Zuyi Li
  • 通讯作者:
    Zuyi Li
Transient Characteristics of Synchronverters Subjected to Asymmetric Faults
同步逆变器遭受不对称故障时的暂态特性
  • DOI:
    10.1109/tpwrd.2019.2906766
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Lili He;Zhikang Shuai;Xin Zhang;Xuan Liu;Zuyi Li;Z. Shen
  • 通讯作者:
    Z. Shen
Integrated planning of BEV public fast-charging stations
  • DOI:
    10.1016/j.tej.2016.11.010
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lin Gong;Yong Fu;Zuyi Li
  • 通讯作者:
    Zuyi Li
Challenges for real-world applications of nonintrusive load monitoring and opportunities for machine learning approaches
非侵入式负载监控的实际应用面临的挑战和机器学习方法的机遇
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Yan;Mehrdad Sheikholeslami;Wenlong Gong;Wei Tian;Zuyi Li
  • 通讯作者:
    Zuyi Li

Zuyi Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zuyi Li', 18)}}的其他基金

EAGER: Renewables: Market Mechanism for Managing Uncertainties Caused by High Levels of Renewable Generation
EAGER:可再生能源:管理高水平可再生能源发电引起的不确定性的市场机制
  • 批准号:
    1549937
  • 财政年份:
    2015
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Coordination of Renewable Hydro-Wind Units for Enhancing the Hydrothermal Power System Operation
协调可再生水力风电机组以增强水热发电系统的运行
  • 批准号:
    0801853
  • 财政年份:
    2008
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
GOALI: Security-Constrained Optimal Coordination of Generation and Transmission Maintenance Outage Scheduling
GOALI:发电和输电维护停电调度的安全约束最优协调
  • 批准号:
    0725666
  • 财政年份:
    2007
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了