Fluctuations, Resonances, and Critical Phenomena

波动、共振和关键现象

基本信息

  • 批准号:
    1104596
  • 负责人:
  • 金额:
    $ 57.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This research will address fundamental issues concerning quantum dynamics in the presence of disorder, and topics related to critical phenomena in statistical mechanics. One of the outstanding challenges is to develop mathematical tools for the analysis of the extended states and conduction in the presence of disorder. Of particular interest is the possibility of the localization - delocalization transition in systems of interacting particles. The work will build on the progress which was recently made by the PI which showed that in certain situations extended states emerge through tunneling facilitated by resonances between well separated localization centers. In the area of Statistical Mechanics, research will be resumed into critical phenomena, in particular at critical dimensions. The goal is to resolve some unsettled questions, in particular in relation to the phi(4d) field theory. The well known non-perturbative results on this topic did not yet address conclusively the critical dimension d = 4. Research will also be directed at clarifying the possible existence of a novel type of transition, at which the nature of the coupling of the local order parameter to the quenched disorder in d = 2 dimensional systems may change as the disorder strength is varied. The PI's past work on this subject included proof, jointly with J. Wehr, of the rounding effect of the disorder, and the recent extension of this to quantum systems, done jointly with R. Greenberg and J. L. Lebowitz. The envisioned research is expected to combine the perspectives of Probability (fluctuation analysis and large deviation theory) and Analysis (Hp function spaces and operator theory) for results which are of interest for Physics. As was demonstrated in the past, the challenge of shedding light on issues of physics enriches also fields of mathematics. This grant includes funds for a graduate student and a postdoc, and for the continuation of fruitful collaborations. These are highly valuable both for the proposed research and for the training component of the work. The PI's past work has contributed to the professional development of a number of men and women who are now active researchers in related fields, and this project will continue to serve that role as well. The research results will be presented through publications, lectures and workshops. The PI has assisted in the organization of meetings.
这项研究将解决有关量子动力学在无序存在的基本问题,并在统计力学的临界现象相关的主题。其中一个突出的挑战是发展数学工具的扩展状态的分析和存在的障碍传导。特别令人感兴趣的是相互作用粒子系统中局域化-离域化转变的可能性。这项工作将建立在PI最近取得的进展的基础上,该进展表明,在某些情况下,扩展态通过隧道效应出现,这是由分离良好的本地化中心之间的共振促成的。在统计力学领域,研究将恢复到临界现象,特别是在临界尺寸。目标是解决一些悬而未决的问题,特别是与phi(4d)场论有关的问题。关于这一主题的众所周知的非微扰结果还没有决定性地解决临界尺寸d = 4。研究还将致力于澄清可能存在的一种新类型的过渡,在d = 2维系统中的局部序参数的耦合淬火无序的性质可能会随着无序强度的变化而变化。PI过去在这个问题上的工作包括与J. Wehr联合证明无序的舍入效应,以及最近与R. Greenberg和J.L.莱博维茨预期的研究预计将联合收割机结合概率(波动分析和大偏差理论)和分析(Hp函数空间和算子理论)的观点,获得物理学感兴趣的结果。正如过去所证明的那样,揭示物理问题的挑战也丰富了数学领域。这笔赠款包括一名研究生和一名博士后的资金,以及继续进行富有成效的合作的资金。这些对拟议的研究和工作的培训部分都非常有价值。PI过去的工作促进了一些男性和女性的专业发展,他们现在是相关领域的活跃研究人员,该项目也将继续发挥这一作用。研究成果将通过出版物、讲座和讲习班进行介绍。PI协助组织会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Aizenman其他文献

Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit
  • DOI:
    10.1007/bf01202528
  • 发表时间:
    1978-10-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Sheldon Goldstein;Joel L. Lebowitz
  • 通讯作者:
    Joel L. Lebowitz
Geometric analysis of φ4 fields and Ising models. Parts I and II
Local Ward identities and the decay of correlations in ferromagnets
Finite-Volume Fractional-Moment Criteria¶for Anderson Localization
  • DOI:
    10.1007/s002200100441
  • 发表时间:
    2014-01-25
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Jeffrey H. Schenker;Roland M. Friedrich;Dirk Hundertmark
  • 通讯作者:
    Dirk Hundertmark
Entanglement Entropy Bounds for Pure States of Rapid Decorrelation
  • DOI:
    10.1007/s00220-025-05324-3
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Simone Warzel
  • 通讯作者:
    Simone Warzel

Michael Aizenman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Aizenman', 18)}}的其他基金

Critical Phenomena and Disorder Effects
关键现象和紊乱效应
  • 批准号:
    1613296
  • 财政年份:
    2016
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Topics in the Spectral Theory of Random Operators and in Statistical Mechanics
随机算子谱理论和统计力学主题
  • 批准号:
    1305472
  • 财政年份:
    2013
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Disorder Effects on Quantum Spectra and Dynamics
无序对量子光谱和动力学的影响
  • 批准号:
    0602360
  • 财政年份:
    2006
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Critical Phenomena and Stochastic Geometry
临界现象和随机几何
  • 批准号:
    9971149
  • 财政年份:
    1999
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Disorder Effects and Critical Behavior in Statistical Mechanics and in Quantum Systems
统计力学和量子系统中的无序效应和关键行为
  • 批准号:
    9512729
  • 财政年份:
    1996
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Disorder Effects and Critical Behavior in Statistical Mechanics and in Quantum Systems
统计力学和量子系统中的无序效应和关键行为
  • 批准号:
    9214654
  • 财政年份:
    1992
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Critical Behavior and Disorder Effects in Statistical Mechanics and in Quantum Systems (Physics)
统计力学和量子系统中的临界行为和无序效应(物理学)
  • 批准号:
    9196114
  • 财政年份:
    1991
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Critical Behavior and Disorder Effects in Statistical Mechanics and in Quantum Systems (Physics)
统计力学和量子系统中的临界行为和无序效应(物理学)
  • 批准号:
    8912067
  • 财政年份:
    1989
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Critical Behavior in Statistical Mechanics and Quantum FieldTheory (Physics)
统计力学和量子场论(物理学)中的关键行为
  • 批准号:
    8896163
  • 财政年份:
    1988
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Block Travel Support to 1988 IAMP Congress
数学科学:为 1988 年 IAMP 大会提供全程旅行支持
  • 批准号:
    8806456
  • 财政年份:
    1988
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Standard Grant

相似海外基金

Studies on Hadron Resonances by uniformized Mittag-Leffler expansion
均匀 Mittag-Leffler 展开式的强子共振研究
  • 批准号:
    24K07062
  • 财政年份:
    2024
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Televising Asexuality: Representations, Resonances, and Community Viewership.
电视无性恋:表现、共鸣和社区收视率。
  • 批准号:
    2875724
  • 财政年份:
    2023
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Studentship
Collective Dynamics and Resonances of Phonons and Dislocations in Thermal Transport
热传输中声子和位错的集体动力学和共振
  • 批准号:
    2121895
  • 财政年份:
    2023
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Continuing Grant
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
  • 批准号:
    2240562
  • 财政年份:
    2023
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326699
  • 财政年份:
    2023
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Standard Grant
Semiclassical distribution of quantum resonances and graph structure of classical trapped trajectories
量子共振的半经典分布和经典俘获轨迹的图结构
  • 批准号:
    22KJ2364
  • 财政年份:
    2023
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326698
  • 财政年份:
    2023
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Standard Grant
Analogies between Comparisons as Mechanisms of “Departicularization”? On the Construction of Resonances between Colonial and Metropolitan Formations of Comparisons in National “Founding Debates” in the German Empire (1871-1918). (F07#)
作为“去特定化”机制的比较之间的类比?
  • 批准号:
    500636732
  • 财政年份:
    2022
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Collaborative Research Centres
CAREER: Nonlinear Resonances of Highly Damped, Soft Materials
职业:高阻尼软材料的非线性共振
  • 批准号:
    2145512
  • 财政年份:
    2022
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Standard Grant
Scattering resonances in the vanishing curvature limit
曲率消失极限中的散射共振
  • 批准号:
    2746963
  • 财政年份:
    2022
  • 资助金额:
    $ 57.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了