Critical Phenomena and Stochastic Geometry

临界现象和随机几何

基本信息

  • 批准号:
    9971149
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research concerns the analysis of issues which play important roles in models with interesting physics, particularly of the area of condensed matter. The goal is to contribute to the understanding of the physics involved, and also to develop mathematical structures which are of relevance as well as of intrinsic interest. Particular attention will be given to: i) the stochastic geometry of excitations related to the correlations in systems which are critical in the sense of statistical mechanics, and ii) the de-localization transition for quantum operators in the presence of localizing disorder. Fractal structures play important roles in correlated fluctuations in critical systems, and in the nature of correlations in quantum spin chains at low temperatures. It is proposed to continue to develop the basic tools for dealing with the emergent stochastic geometric structures, to study some model-specific and dimension-dependent properties in systems ranging from percolation to classical and quantum spin models, and to elucidate the relations with conformal field theory. Extended excitations play fundamental role in conduction phenomena. The other goal of the proposed work is to analyze the de-localization transition, i.e., the formation of extended states in systems with extensive disorder.
这项拟议的研究涉及对具有有趣物理的模型中扮演重要角色的问题的分析,特别是对凝聚态物质领域的分析。目标是促进对所涉及的物理学的理解,并发展具有相关性和内在趣味性的数学结构。将特别注意:i)与系统中的关联有关的激发的随机几何,这在统计力学意义上是关键的,以及ii)在局域无序存在的情况下量子算符的非定域跃迁。在临界系统中的关联涨落中,以及在低温下量子自旋链的关联性质中,分形结构起着重要的作用。建议继续发展处理涌现的随机几何结构的基本工具,研究从渗流到经典和量子自旋模型的一些特定于模型的和依赖于维度的性质,并阐明与共形场论的关系。扩展激发在传导现象中起着重要的作用。这项工作的另一个目标是分析非定域化转变,即具有广泛无序的系统中扩展态的形成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Aizenman其他文献

Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit
  • DOI:
    10.1007/bf01202528
  • 发表时间:
    1978-10-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Sheldon Goldstein;Joel L. Lebowitz
  • 通讯作者:
    Joel L. Lebowitz
Geometric analysis of φ4 fields and Ising models. Parts I and II
Local Ward identities and the decay of correlations in ferromagnets
Finite-Volume Fractional-Moment Criteria¶for Anderson Localization
  • DOI:
    10.1007/s002200100441
  • 发表时间:
    2014-01-25
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Jeffrey H. Schenker;Roland M. Friedrich;Dirk Hundertmark
  • 通讯作者:
    Dirk Hundertmark
Entanglement Entropy Bounds for Pure States of Rapid Decorrelation
  • DOI:
    10.1007/s00220-025-05324-3
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Simone Warzel
  • 通讯作者:
    Simone Warzel

Michael Aizenman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Aizenman', 18)}}的其他基金

Critical Phenomena and Disorder Effects
关键现象和紊乱效应
  • 批准号:
    1613296
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Topics in the Spectral Theory of Random Operators and in Statistical Mechanics
随机算子谱理论和统计力学主题
  • 批准号:
    1305472
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Fluctuations, Resonances, and Critical Phenomena
波动、共振和关键现象
  • 批准号:
    1104596
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Disorder Effects on Quantum Spectra and Dynamics
无序对量子光谱和动力学的影响
  • 批准号:
    0602360
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Disorder Effects and Critical Behavior in Statistical Mechanics and in Quantum Systems
统计力学和量子系统中的无序效应和关键行为
  • 批准号:
    9512729
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Disorder Effects and Critical Behavior in Statistical Mechanics and in Quantum Systems
统计力学和量子系统中的无序效应和关键行为
  • 批准号:
    9214654
  • 财政年份:
    1992
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Critical Behavior and Disorder Effects in Statistical Mechanics and in Quantum Systems (Physics)
统计力学和量子系统中的临界行为和无序效应(物理学)
  • 批准号:
    9196114
  • 财政年份:
    1991
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Critical Behavior and Disorder Effects in Statistical Mechanics and in Quantum Systems (Physics)
统计力学和量子系统中的临界行为和无序效应(物理学)
  • 批准号:
    8912067
  • 财政年份:
    1989
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Critical Behavior in Statistical Mechanics and Quantum FieldTheory (Physics)
统计力学和量子场论(物理学)中的关键行为
  • 批准号:
    8896163
  • 财政年份:
    1988
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Block Travel Support to 1988 IAMP Congress
数学科学:为 1988 年 IAMP 大会提供全程旅行支持
  • 批准号:
    8806456
  • 财政年份:
    1988
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

Building the bridge from atomistic to stochastic modelling of nanoscale friction phenomena
搭建纳米级摩擦现象从原子建模到随机建模的桥梁
  • 批准号:
    RGPIN-2015-04486
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Functional analysis and stochastic analysis for coagulation-fragmentation phenomena
凝固破碎现象的泛函分析和随机分析
  • 批准号:
    22K03357
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of mathematical model of thermo-fluid phenomena in microchannel with stochastic connections using determinism and probability theory
使用确定论和概率论开发具有随机连接的微通道中热流体现象的数学模型
  • 批准号:
    22K18769
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A study on time division multiplexing of stochastic resonance phenomena and its application to biological signal detection
随机共振现象时分复用研究及其在生物信号检测中的应用
  • 批准号:
    22K18176
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Prediction systems based on stochastic response characteristics of phenomena from rainfall-runoff to flood inundation.
基于从降雨径流到洪水淹没现象的随机响应特征的预测系统。
  • 批准号:
    22K04325
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building the bridge from atomistic to stochastic modelling of nanoscale friction phenomena
搭建纳米级摩擦现象从原子建模到随机建模的桥梁
  • 批准号:
    RGPIN-2015-04486
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1927258
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1815873
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Exploration of stochastic phenomena disobeying the central limit theorem and development of innovative stochastic processes in the structural engineering
结构工程中不服从中心极限定理的随机现象的探索和创新随机过程的发展
  • 批准号:
    18K04334
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building the bridge from atomistic to stochastic modelling of nanoscale friction phenomena
搭建纳米级摩擦现象从原子建模到随机建模的桥梁
  • 批准号:
    RGPIN-2015-04486
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了