Topics in the Spectral Theory of Random Operators and in Statistical Mechanics

随机算子谱理论和统计力学主题

基本信息

  • 批准号:
    1305472
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

This research focusses on two groups of topics in mathematical physics: the spectral theory of random operators, and statistical mechanics models, with special focus on two and quasi-one-dimensional systems. A wide range of methods from mathematical physics, classical analysis, probability theory, and convex geometry will be applied to study some of the open problems in these areas. In addition, the connections between the two areas will be investigated. Several major problems pertaining to random band operators remain open after many years of research. Perturbative series (such as resolvent expansions) typically diverge in the physically interesting regimes, whereas the non-perturbative methods (supersymmetric formalism, transfer operators) have been only partially developed. The PI will develop perturbative and non-perturbative methods to improve the rigorous understanding of the spectral properties of random band operators. In two- and higher dimensional statistical mechanics, the PI will investigate the large scale properties of gradient models, as well as discrete models. A better understanding of the former will also shed light on the latter (for example, on two-dimensional height models). The PI will strive to combine the well-developed multi-scale and convexity methods with techniques from analysis and high-dimensional convex geometry. Broader impacts This project will develop the connections between mathematical physics and other fields of mathematics, especially, probability theory, classical analysis and convex geometry. These connections may lead to developments in all these fields. The PI has delivered numerous talks at seminars, colloquia, and international conferences in mathematical physics, analysis, probability, high-dimensional geometry, and the interactions between these areas.
本研究集中在数学物理的两组主题:随机算子的谱理论和统计力学模型,特别关注二维和准一维系统。从数学物理,经典分析,概率论和凸几何的方法将广泛应用于研究这些领域的一些开放的问题。此外,还将研究这两个领域之间的联系。经过多年的研究,与随机频带算子有关的几个主要问题仍然没有解决。微扰级数(如预解式展开)通常在物理上感兴趣的区域发散,而非微扰方法(超对称形式主义,转移算子)只得到了部分发展。PI将开发微扰和非微扰方法,以提高对随机带算子谱特性的严格理解。在二维和高维统计力学中,PI将研究梯度模型以及离散模型的大尺度特性。更好地理解前者也将有助于理解后者(例如,二维高度模型)。PI将努力将成熟的多尺度和凸性方法与分析和高维凸几何技术相结合。该项目将发展数学物理与其他数学领域之间的联系,特别是概率论,经典分析和凸几何。这些联系可能导致所有这些领域的发展。PI在数学物理,分析,概率,高维几何以及这些领域之间的相互作用的研讨会,座谈会和国际会议上发表了许多演讲。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Aizenman其他文献

Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit
  • DOI:
    10.1007/bf01202528
  • 发表时间:
    1978-10-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Sheldon Goldstein;Joel L. Lebowitz
  • 通讯作者:
    Joel L. Lebowitz
Geometric analysis of φ4 fields and Ising models. Parts I and II
Local Ward identities and the decay of correlations in ferromagnets
Finite-Volume Fractional-Moment Criteria¶for Anderson Localization
  • DOI:
    10.1007/s002200100441
  • 发表时间:
    2014-01-25
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Jeffrey H. Schenker;Roland M. Friedrich;Dirk Hundertmark
  • 通讯作者:
    Dirk Hundertmark
Entanglement Entropy Bounds for Pure States of Rapid Decorrelation
  • DOI:
    10.1007/s00220-025-05324-3
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Aizenman;Simone Warzel
  • 通讯作者:
    Simone Warzel

Michael Aizenman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Aizenman', 18)}}的其他基金

Critical Phenomena and Disorder Effects
关键现象和紊乱效应
  • 批准号:
    1613296
  • 财政年份:
    2016
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Fluctuations, Resonances, and Critical Phenomena
波动、共振和关键现象
  • 批准号:
    1104596
  • 财政年份:
    2011
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Disorder Effects on Quantum Spectra and Dynamics
无序对量子光谱和动力学的影响
  • 批准号:
    0602360
  • 财政年份:
    2006
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Critical Phenomena and Stochastic Geometry
临界现象和随机几何
  • 批准号:
    9971149
  • 财政年份:
    1999
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Disorder Effects and Critical Behavior in Statistical Mechanics and in Quantum Systems
统计力学和量子系统中的无序效应和关键行为
  • 批准号:
    9512729
  • 财政年份:
    1996
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Disorder Effects and Critical Behavior in Statistical Mechanics and in Quantum Systems
统计力学和量子系统中的无序效应和关键行为
  • 批准号:
    9214654
  • 财政年份:
    1992
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Critical Behavior and Disorder Effects in Statistical Mechanics and in Quantum Systems (Physics)
统计力学和量子系统中的临界行为和无序效应(物理学)
  • 批准号:
    9196114
  • 财政年份:
    1991
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Critical Behavior and Disorder Effects in Statistical Mechanics and in Quantum Systems (Physics)
统计力学和量子系统中的临界行为和无序效应(物理学)
  • 批准号:
    8912067
  • 财政年份:
    1989
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Critical Behavior in Statistical Mechanics and Quantum FieldTheory (Physics)
统计力学和量子场论(物理学)中的关键行为
  • 批准号:
    8896163
  • 财政年份:
    1988
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Block Travel Support to 1988 IAMP Congress
数学科学:为 1988 年 IAMP 大会提供全程旅行支持
  • 批准号:
    8806456
  • 财政年份:
    1988
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

Topics in Analysis, Spectral Theory, and Partial Differential Equations
分析、谱理论和偏微分方程主题
  • 批准号:
    2054465
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Topics in Automorphic forms and Spectral Theory
自守形式和谱论主题
  • 批准号:
    2417008
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Studentship
Topics in spectral theory of almost periodic operators.
几乎周期算子的谱论主题。
  • 批准号:
    2436138
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Studentship
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
Workshop on Analytic and Computational Techniques in Spectral Theory and Related Topics
谱理论及相关主题的分析和计算技术研讨会
  • 批准号:
    EP/H032274/1
  • 财政年份:
    2011
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
Topics in random matrix theory and spectral theory of operators on Riemannian manifolds.
随机矩阵理论和黎曼流形算子谱理论的主题。
  • 批准号:
    EP/H023127/1
  • 财政年份:
    2009
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了