Moduli Problems in Algebraic Geometry, Their Structures and Their Applications
代数几何中的模问题、其结构及其应用
基本信息
- 批准号:1104553
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is a research in algebraic geometry, a branch of mathematical science. The Principal Investigator (PI) will study properties of certain spaces (called moduli space) of objects that can be characterized by algebraic properties. (An example of such are the roots of polynomials). These spaces describe solution spaces that are vital to research in many branches of mathematical researches and in theoretical physics. The PI will work on several research directions. He will work toward a full understanding of high genus Gromov-Witten invariants of Calabi-Yau threefolds; he will also develop an alternative theory on generalized Donaldson-Thomas invariants of Calabi-Yau threefold; develop necessarily tools to study and prove the conjecture on BPS-states of Calabi-Yau threefolds.This research project is the continuation of PI's long term research goal of broadening mathematical research by understanding new idea from theoretical physics and contributing to the development of theoretical physics by providing mathematical foundation vital to its advancement. The progress on studying high genus GW invariants and DT invariants will advance our understanding of moduli spaces in general; enrich the research in algebraic geometry. It will also strengthen the interaction between algebraic geometry and other subjects of mathematics, and with mathematical physics. This project will promote teaching, learning and training young mathematical researchers. Over all, it will contribute its share in advancing the science research in the country.
本课题是数学科学的一个分支--代数几何的研究。主要研究者(PI)将研究可以由代数性质表征的对象的某些空间(称为模空间)的性质。(An这样的例子是多项式的根)。这些空间描述的解空间是至关重要的研究在许多分支的数学研究和理论物理。PI将致力于几个研究方向。他将致力于全面理解Calabi-Yau三重的高属Gromov-Witten不变量;他还将发展一个关于Calabi-Yau三重的广义Donaldson-Thomas不变量的替代理论;为研究和证明Calabi的BPS态猜想提供了必要的工具,本研究项目是PI长期研究目标的延续,即通过了解新思想来拓宽数学研究,理论物理学,并通过提供对其发展至关重要的数学基础来促进理论物理学的发展。对高亏格GW不变量和DT不变量的研究将从总体上加深对模空间的理解,丰富代数几何的研究。它还将加强代数几何与其他数学学科以及数学物理之间的相互作用。该项目将促进年轻数学研究人员的教学和培训。总的来说,它将为推进该国的科学研究做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Li其他文献
Quantum Pure State Tomography via Variational Hybrid Quantum-Classical Method
通过变分混合量子经典方法进行量子纯态断层扫描
- DOI:
10.1103/physrevapplied.13.024013 - 发表时间:
2020-01 - 期刊:
- 影响因子:4.6
- 作者:
Tao Xin;Xinfang Nie;Xiangyu Kong;Jingwei Wen;Dawei Lu;Jun Li - 通讯作者:
Jun Li
Electrochemical, in-situ surface EXAFS and CTR studies of Co monolayers irreversibly adsorbed onto Pt(111)
Co 单层不可逆吸附在 Pt(111) 上的电化学、原位表面 EXAFS 和 CTR 研究
- DOI:
10.1016/s0013-4686(98)00362-4 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
E. Herrero;Jun Li;H. Abruña - 通讯作者:
H. Abruña
Attribute-based Blockchain Dynamic Failure Traceability in Multi-vendor Disaggregated Optical Networks
多供应商分解光网络中基于属性的区块链动态故障追踪
- DOI:
10.1109/iwcmc58020.2023.10182621 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
W. Liu;Hui Yang;Chao Li;Jun Li;Q. Yao;J. Zhang - 通讯作者:
J. Zhang
Target-free 3D tiny structural vibration measurement based on deep learning and motion magnification
基于深度学习和运动放大的无目标3D微小结构振动测量
- DOI:
10.1016/j.jsv.2022.117244 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Yanda Shao;Lingjun Li;Jun Li;S. An;Hong Hao - 通讯作者:
Hong Hao
Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation
使用玻尔兹曼方程的多尺度和多物理场流动模拟
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jun Li - 通讯作者:
Jun Li
Jun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Li', 18)}}的其他基金
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
- 批准号:
2309845 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Discovery Projects - Grant ID: DP210101100
发现项目 - 拨款 ID:DP210101100
- 批准号:
ARC : DP210101100 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Discovery Projects
Explore Electrocatalysis to Improve the Cathode Performance in Li-S Batteries
探索电催化提高锂硫电池正极性能
- 批准号:
2054754 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
- 批准号:
2101388 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Offline and Online Change-point Analysis for Large-scale Time Series Data
大规模时间序列数据的离线和在线变点分析
- 批准号:
1916239 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
- 批准号:
1910447 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
A Novel Fuel Cell Catalyst and Support Architecture Based on Edge-site Pyridinic Nitrogen-Doping on Vertically Aligned Conical Carbon Nanofibers
基于垂直排列锥形碳纳米纤维边缘位吡啶氮掺杂的新型燃料电池催化剂和支撑结构
- 批准号:
1703263 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
SUSCHEM: Exploring Specific Heating in Microwave-assisted Synthesis of Hierarchical Hybrid Nanomaterials for Future Sustainable Batteries
SUSCHEM:探索微波辅助合成未来可持续电池的分层混合纳米材料中的比热
- 批准号:
1707585 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
CAREER: Genetic and Molecular Mechanisms of Parasite Infection in Insects
职业:昆虫寄生虫感染的遗传和分子机制
- 批准号:
1742644 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
- 批准号:
1564348 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
- 批准号:
RGPIN-2015-03933 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
- 批准号:
RGPIN-2015-03933 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
- 批准号:
RGPIN-2015-03933 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
- 批准号:
RGPIN-2015-03933 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Moduli Problems in Algebraic Geometry, their Structures, and their Applications
代数几何中的模问题、其结构及其应用
- 批准号:
1601211 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
- 批准号:
RGPIN-2015-03933 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Approaches to Algebraic Varieties and Moduli Problems
代数簇和模问题的组合方法
- 批准号:
RGPIN-2015-03933 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual