Native Point Defects and Doping of Heterovalent Ternary Wide Band Gap Semiconductors

异价三元宽带隙半导体的本征点缺陷与掺杂

基本信息

  • 批准号:
    1104595
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY This award supports computational research on point defects and doping in a new class of wide band gap semiconductors which may have optoelectronic applications. It focuses on II-IV-N2 semiconductors in which the group III element, e.g. Ga in GaN, is replaced by group II and group IV elements, hence the name heterovalent ternary. In preliminary work, the PI found that these materials have promising optoelectronic properties similar to those of the group-III nitrides. The PI will explore whether the point defect physics of these II-IV-N2 semiconductors is more conducive to doping than the III-nitrides. The flexibility arising from having two cation sublattices with different valences enriches the point defect and doping physics. The PI will participate in a close collaboration with an experimentalist who works on the same family of heterovalent ternary compounds.An integral part of the proposal is to improve current methodologies for point defect calculations in two areas. First, in the context of defect physics, the PI will focus on the problem of underestimating the band gaps, as is the tendency of density functional theory in the local density approximation. Using the framework of the recently developed quasiparticle self-consistent GW approach as implemented in the full-potential linearized muffin-tin orbital method, the PI will exploit the possibility of representing the self-energy in a real-space basis set, hence reducing the large computational demand. Second, the PI will focus on a challenging problem in point defect physics related to the accuracy of the calculations for shallow donors and acceptors. The PI will revive the effective mass approximation method with central cell corrections extracted from first-principles calculations and generalize the approach to the lower symmetry Hamiltonian required for the particular class of semiconductors under study. To further address the supercell finite size effects, the PI will redevelop the Green's function approach as a more accurate means to obtain one-electron defect levels with respect to the band edges and explore how long-range Coulomb tail effects can be included in this method.The award also supports the training of two graduate students in electronic structure methods and defect physics. The PI will also mentor and involve undergraduate students in research through senior projects in an existing Research Experience for Undergraduates program. The PI's planned collaboration with a colleague from Mexico on parts of this project will allow student exchanges between the two groups and be useful in attracting underrepresented minorities to science and technology.NONTECHNICAL SUMMARYThis award supports computational research on method development related to modeling of isolated imperfections and impurities that are intentionally introduced into crystalline materials as well as the application of the developed methods and techniques to a new class of semiconductors that can be potentially useful for manipulating optical properties of electronic devices.Isolated imperfections or impurities, generally called "point defects", are ubiquitous in crystalline solids. Intentionally introduced impurities, called dopants, and native defects, such as missing atoms or atoms in the wrong place in the crystal, play very crucial roles in determining various properties of semiconducting materials. Some defects are essential for, while some are detrimental for the useful operation of a semiconductor device. Accordingly, obtaining a fundamental understanding of which defects give rise to what properties in semiconductor materials is a problem of both fundamental and technological relevance. While theoretical and computational studies, aided by the vast increase in computational power and improved algorithmic developments, have played a major role toward achieving this goal during the last three decades, even the most widely used parameter-free computational methods still suffer from certain deficiencies when it comes to making accurate and reliable predictions about various properties of native defects and impurities in solids. The PI will address such problems that arise in the modeling of structural, electronic, and optical properties of defects by revisiting existing methodologies, combining them with state-of-the-art capabilities, and extending them to produce more sophisticated tools and methods that can increase the accuracy and reliability of parameter-free defect computations. The PI will then apply these new methods to a new class of nitride semiconductors, composed of three elements, that can potentially help to overcome certain technological difficulties associated with existing group-III nitrides, which are composed of two elements, such as gallium nitride, for optical applications. This new class of semiconductors is important for photovoltaic energy conversion in solar cells as well as the development of solid-state lighting by light emitting diodes. If successful, the project will provide a rationale for further experimental development of these materials. The award also supports the training of two graduate students in electronic structure methods and defect physics. The PI will also mentor and involve undergraduate students in research through senior projects in an existing Research Experience for Undergraduates program. The PI's planned collaboration with a colleague from Mexico on parts of this project will allow student exchanges between the two groups and be useful in attracting underrepresented minorities to science and technology.
该奖项支持对可能具有光电应用的新型宽带隙半导体中的点缺陷和掺杂进行计算研究。它专注于II-IV-N2半导体,其中第III族元素,例如GaN中的Ga,被第II族和第IV族元素取代,因此命名为异价三元。 在初步工作中,PI发现这些材料具有与III族氮化物类似的有前途的光电特性。 PI将探索这些II-IV-N2半导体的点缺陷物理是否比III-氮化物更有利于掺杂。具有两个不同价态的阳离子亚晶格所产生的灵活性丰富了点缺陷和掺杂物理。 PI将与一位研究同一系列异价三元化合物的实验学家密切合作。该提案的一个组成部分是改进两个领域的点缺陷计算方法。首先,在缺陷物理学的背景下,PI将集中在低估带隙的问题上,这是密度泛函理论在局域密度近似中的趋势。使用最近开发的准粒子自洽GW方法的框架,在全势能线性化松饼罐轨道方法中实现,PI将利用在实空间基组中表示自能的可能性,从而减少大量的计算需求。第二,PI将集中在一个具有挑战性的问题,在点缺陷物理有关的计算浅施主和受主的准确性。PI将恢复有效质量近似方法与中心细胞校正提取的第一性原理计算和推广的方法,以较低的对称性所需的特定类别的半导体研究。为了进一步解决超原胞有限尺寸效应,PI将重新开发绿色函数方法,使其成为一种更精确的方法,以获得相对于能带边缘的单电子缺陷能级,并探索如何将长程库仑尾效应纳入该方法。该奖项还支持了两名电子结构方法和缺陷物理学研究生的培训。PI还将通过现有的本科生研究经验计划中的高级项目指导和参与本科生的研究。 PI计划与墨西哥的一位同事就该项目的部分内容进行合作,这将使两个团体之间的学生交流成为可能,并有助于吸引代表性不足的少数群体参与科学和技术。非技术性总结该奖项支持与有意引入晶体材料的孤立缺陷和杂质建模相关的方法开发的计算研究,以及所开发方法的应用,这些技术应用于一种新的半导体,这种半导体可能对操纵电子器件的光学特性有潜在的用处。孤立的缺陷或杂质,通常称为“点缺陷”,在晶体固体中普遍存在。 有意引入的杂质(称为掺杂剂)和原生缺陷(例如晶体中缺少原子或原子位置错误)在决定半导体材料的各种特性方面起着非常关键的作用。 一些缺陷对于半导体器件的有用操作是必要的,而一些缺陷对于半导体器件的有用操作是有害的。 因此,获得对半导体材料中哪些缺陷引起什么性质的基本理解是一个基础和技术相关性的问题。 虽然理论和计算研究,在计算能力和改进的算法发展的巨大增长的帮助下,在过去的三十年中,在实现这一目标方面发挥了重要作用,但即使是最广泛使用的无参数计算方法,在对固体中的原生缺陷和杂质的各种性质进行准确和可靠的预测时,仍然存在某些缺陷。 PI将通过重新审视现有的方法,将其与最先进的能力相结合,并将其扩展为更复杂的工具和方法,以提高无参数缺陷计算的准确性和可靠性,来解决缺陷的结构,电子和光学特性建模中出现的问题。 然后,PI将这些新方法应用于一类由三种元素组成的新型氮化物半导体,这可能有助于克服与现有III族氮化物相关的某些技术困难,这些氮化物由两种元素组成,如氮化镓,用于光学应用。这种新型半导体对于太阳能电池中的光伏能量转换以及发光二极管固态照明的发展非常重要。 如果成功,该项目将为这些材料的进一步实验开发提供理论基础。该奖项还支持电子结构方法和缺陷物理学的两名研究生的培训。PI还将通过现有的本科生研究经验计划中的高级项目指导和参与本科生的研究。 PI计划与墨西哥的一位同事就该项目的部分内容进行合作,这将使两个群体之间能够进行学生交流,并有助于吸引代表性不足的少数群体从事科学和技术工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walter Lambrecht其他文献

Walter Lambrecht的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walter Lambrecht', 18)}}的其他基金

Materials World Network on Rare-Earth and Transition-Metal Nitride Spectroscopic Studies
稀土和过渡金属氮化物光谱研究材料世界网络
  • 批准号:
    0710485
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
SPIN ELECTRONICS: Electronic and Magneto-Optic Properties of Rare-Earth and Transition Metal based Materials for Spintronics
自旋电子学:用于自旋电子学的稀土和过渡金属基材料的电子和磁光特性
  • 批准号:
    0223634
  • 财政年份:
    2002
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Atomistic Study of Layered Mesoscopic Systems of New Materials
新材料层状介观体系的原子研究
  • 批准号:
    9529376
  • 财政年份:
    1996
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Theoretical Study of Nitride Wide Bandgap Semiconductors forElectronic and Optical Applications
电子和光学应用氮化物宽带隙半导体的理论研究
  • 批准号:
    9222387
  • 财政年份:
    1993
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
  • 批准号:
    60573157
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of plastic functionality electronic devices based on elementary processes of point defects fluid and condensation
基于点缺陷流体和冷凝基本过程的塑料功能电子器件的开发
  • 批准号:
    23H01687
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Correlated excited states of point defects in insulators
职业:绝缘体中点缺陷的相关激发态
  • 批准号:
    2237674
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Identification of point defects in GaN materials and their impact on device performance
GaN 材料中点缺陷的识别及其对器件性能的影响
  • 批准号:
    2734689
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Studentship
Effective use of characteristics of Bi-based III-V compound semiconductors by controlling point defects density inside their crystals grown at low temperatures
通过控制低温生长晶体内部的点缺陷密度,有效利用Bi基III-V族化合物半导体的特性
  • 批准号:
    21H01829
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing models for CALPHAD-type phase diagrams that directly consider the effect of structural point defects
开发直接考虑结构点缺陷影响的 CALPHAD 型相图模型
  • 批准号:
    19K15273
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Realization of a method to visualize the distribution of threading dislocations and point defects in semiconductor crystals
半导体晶体中穿透位错和点缺陷分布可视化方法的实现
  • 批准号:
    18K19028
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Polarity control and point defects in low temperature grown polycrystalline zinc oxide thin films
低温生长多晶氧化锌薄膜的极性控制和点缺陷
  • 批准号:
    17K06356
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Atomic point defects in two-dimensional materials
二维材料中的原子点缺陷
  • 批准号:
    1904848
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Studentship
Action-at-a-Distance via Ice-Like point Defects: Relating Catalytic Gas-Hydrate Formation and Antifreeze Protein Action to Epitaxial Growth of Gas Hydrates
通过类冰点缺陷的远距离作用:将催化气体水合物形成和防冻蛋白作用与气体水合物外延生长联系起来
  • 批准号:
    1566600
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Point Defects in Two-dimensional Material Systems: Fundamentals and New Perspectives
职业:二维材料系统中的点缺陷:基础知识和新视角
  • 批准号:
    1552220
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了