Deformations and Collapsing of Curved Spaces

弯曲空间的变形和塌陷

基本信息

  • 批准号:
    1105045
  • 负责人:
  • 金额:
    $ 14.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This proposal involves studying deformations and collapsing of Riemannian metrics with various curvature bounds. A basic object of interest is the moduli space of complete nonnegatively curved metrics on a given open manifold. Nearby points in the moduli space often correspond to metrics that may appear unrealated and are pulled next to each other by non-obvious diffeomorphisms produced e.g. by surgery theory. Thus to detect nontrivial topology in the moduli space one needs to relate comparison geometry input with machinery of algebraic topology. To this end it is planned to investigate continuity of souls under deformation, especially for manifolds with codimension two souls where the geometry is rather rigid. It is proposed to obtain detailed structure of the moduli space for low-dimensional manifolds. Another topic is studying collapse of souls inside nonnegatively curved open manifolds by establishing relative versions of the fibration theorems. Yet another project is to analyze collapse of cusp cross-sections in finite volume manifolds of bounded negative curvature that admit no negatively pinched metrics.In broad terms the proposal seeks to understand how curvature of the space controls its deformations and degenerations. The spaces considered range from boundaries of three-dimensional convex bodies to their higher dimensional analogs. It is proposed to investigate the manifold of all possible geometric shapes that a given space can assume; the topological features of this manifold of shapes are poorly understood.
这个建议涉及研究变形和倒塌的黎曼度量与各种曲率的界限。一个基本的感兴趣的对象是一个给定的开流形上的完全非负弯曲度量的模空间。模空间中的邻近点通常对应于可能看起来不相关的度量,并且通过例如由手术理论产生的非明显的同构而彼此相邻。因此,为了检测模空间中的非平凡拓扑,需要将比较几何输入与代数拓扑机器相关联。为此,计划调查连续性的灵魂变形下,特别是为流形余维两个灵魂的几何形状是相当刚性。提出了一种求低维流形模空间的详细结构的方法。另一个主题是通过建立纤维化定理的相关版本来研究非负弯曲开流形中灵魂的坍缩。另一个项目是分析有限体积流形中尖点截面的坍缩,该流形具有有界负曲率,不允许负收缩度量。广义上说,该提案旨在了解空间的曲率如何控制其变形和退化。所考虑的空间范围从三维凸体的边界到它们的高维类似物。有人建议研究给定空间可以假设的所有可能的几何形状的流形;这种形状流形的拓扑特征知之甚少。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Belegradek其他文献

Connectedness properties of the space of complete nonnegatively curved planes
  • DOI:
    10.1007/s00208-014-1159-7
  • 发表时间:
    2014-12-10
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Igor Belegradek;Jing Hu
  • 通讯作者:
    Jing Hu
Pinching, Pontrjagin classes, and negatively curved vector bundles
  • DOI:
    10.1007/pl00005803
  • 发表时间:
    2001-05-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Igor Belegradek
  • 通讯作者:
    Igor Belegradek
Erratum to: Connectedness properties of the space of complete nonnegatively curved planes
  • DOI:
    10.1007/s00208-015-1354-1
  • 发表时间:
    2016-01-04
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Igor Belegradek;Jing Hu
  • 通讯作者:
    Jing Hu
Smoothness of Minkowski sum and generic rotations
  • DOI:
    10.1016/j.jmaa.2017.01.088
  • 发表时间:
    2017-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Igor Belegradek;Zixin Jiang
  • 通讯作者:
    Zixin Jiang
An introduction to the volume conjecture. Interactions between hyperbolic geometry, quantum topology and number theory
体积猜想简介。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kathrin Bringmann;Kazuhiro Hikami;and Jeremy Lovejoy;Nobuhiro Innami;藤岡敦;Igor Belegradek;藤岡敦;Hitoshi Murakami
  • 通讯作者:
    Hitoshi Murakami

Igor Belegradek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Belegradek', 18)}}的其他基金

Geometric Group Theory on the Gulf Coast
墨西哥湾沿岸的几何群论
  • 批准号:
    1360048
  • 财政年份:
    2014
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Geometric Group Theory on the Gulf Coast
墨西哥湾沿岸的几何群论
  • 批准号:
    1104098
  • 财政年份:
    2011
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Collapsing and relative hyperbolicity
塌陷和相对双曲性
  • 批准号:
    0804038
  • 财政年份:
    2008
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Geometric Group Theory on the Gulf Coast
墨西哥湾沿岸的几何群论
  • 批准号:
    0737851
  • 财政年份:
    2008
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Collapsing, pinching, and curvature bounds
折叠、收缩和曲率边界
  • 批准号:
    0503864
  • 财政年份:
    2005
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Topology and Geometry of Manifolds with Lower Curvature Bounds
具有较低曲率界限的流形的拓扑和几何
  • 批准号:
    0352576
  • 财政年份:
    2003
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Topology and Geometry of Manifolds with Lower Curvature Bounds
具有较低曲率界限的流形的拓扑和几何
  • 批准号:
    0203979
  • 财政年份:
    2002
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant

相似海外基金

Geometry and collapsing theory of Alexandrov spaces
亚历山德罗夫空间的几何和塌陷理论
  • 批准号:
    22KJ2099
  • 财政年份:
    2023
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
YAP and TAZ: novel regulators of collapsing glomerulopathy
YAP 和 TAZ:塌陷性肾小球病的新型调节因子
  • 批准号:
    478296
  • 财政年份:
    2023
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Operating Grants
YAP and TAZ: novel regulators of collapsing glomerulopathy
YAP 和 TAZ:塌陷性肾小球病的新型调节因子
  • 批准号:
    477295
  • 财政年份:
    2022
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Operating Grants
Detection of collapsing peripheral bulge in Antarctica using satellite gravity data and GIA modeling
使用卫星重力数据和 GIA 建模检测南极洲塌陷的外围隆起
  • 批准号:
    20K22372
  • 财政年份:
    2020
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collapsing bubbles in complex geometries
复杂几何形状中的气泡破裂
  • 批准号:
    2281992
  • 财政年份:
    2019
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Studentship
Elucidation of collapsing and re-stabilizing mechanisms in microbial ecosystems
阐明微生物生态系统的崩溃和重新稳定机制
  • 批准号:
    19K22927
  • 财政年份:
    2019
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Sedimentation Waves in Collapsing Volcanic Plumes
崩塌火山羽流中的沉积波
  • 批准号:
    504918-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Globular Cluster Formation in Hierarchically Collapsing Clouds as an Origin for Multiple Stellar Populations
合作研究:分层塌缩云中球状星团的形成作为多个恒星族的起源
  • 批准号:
    1814772
  • 财政年份:
    2018
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Globular Cluster Formation in Hierarchically Collapsing Clouds as an Origin for Multiple Stellar Populations
合作研究:分层塌缩云中球状星团的形成作为多个恒星族的起源
  • 批准号:
    1815461
  • 财政年份:
    2018
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Investigation of inner mitochondrial collapsing in response to acute cardiac overstretch.
研究急性心脏过度伸展引起的线粒体内塌陷。
  • 批准号:
    18K19435
  • 财政年份:
    2018
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了