Collapsing and relative hyperbolicity
塌陷和相对双曲性
基本信息
- 批准号:0804038
- 负责人:
- 金额:$ 15.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractThis project involves relatively hyperbolic groups of geometric origin, and collapsing with two-sided and lower sectional bounds.These seemingly unrelated themes naturally appear in studying structure and rigidity of finite volume open manifolds of negative sectional curvature, where the (collapsed) cusp ends correspond to peripheral subgroups in the fundamental group of the manifold.Belegradek recently showed that negatively curved finite volume manifolds often lead to fascinating classes of relatively hyperbolic groups, such as the fundamental groups of hyperplane complements in compact real or complex hyperbolic manifolds.As a sample application, Belegradek proved that these groups exhibit Mostow-type rigidity. A natural continuation of this work would be to show that the groups are quasi-isometrically rigid. Furthermore, by analogy with a result of Toledo, one could suspect that the groups are not residually finite, which would imply the existence of a non-residually-finite hyperbolic group. Belegradek also plans to investigate relative hyperbolicity for more intricate hyperplane complements that appear as moduli spaces of algebraic surfaces via recent deep works of Allcock-Carlson-Toledo. Negatively curved cusp ends can be studied via collapsing theory, yet a comprehensive structure theory is available only when the curvature is pinched negative. The project aims to study situations where one could construct cusp cross-sections with good geometric properties ensuring that cusp cross-sections collapse. This builds on Belegradek's work with Kapovitch in the negatively pinched case, as well as on seminal works by Cheeger, Gromov, Fukaya, and Rong.Other projects involve convergence of manifolds under a lower curvature bound. Aiming to improve on Perelman's stability theorem, it is planned to study topology of manifolds that admit DC (difference concave) structures, with possible applications to smooth stability, and natural connections to geometry of Alexandrov spaces. Another project is to prove relative versions of fibration theorems of Yamaguchi and Fukaya with expected applications to collapse and finiteness for normal bundles to souls in nonnegatively curved open manifolds.Collapsing theory studies spaces that appear lower dimensional at a certain small scale, and a basic goal is to understand the structure of collapsed regions under suitable curvature assumptions. Hyperbolicity is a way to bring geometric insight into otherwise rigid algebraic objects. The two concepts fit together as hyperbolicity prevents collapsing on most of the space, which gives hope that the collapsed parts can be described in detail. The proposed research may shed light on several fundamental problems in geometry and group theory.
本项目涉及几何起源的相对双曲群,以及具有双边和下截面界的坍缩,这些看似无关的主题自然地出现在研究具有负截面曲率的有限体积开流形的结构和刚性时,其中(崩溃)尖端对应于流形的基本群中的外围子群。Belegradek最近表明,负弯曲的有限体积流形往往导致到迷人的类相对双曲群,如基本群的超平面补在紧凑的真实的或复杂的双曲流形。作为一个例子的应用,Belegradek证明,这些群体表现出Mostow型刚性。这项工作的一个自然的延续是证明这些群是拟等距刚性的。此外,通过与托莱多的结果类比,人们可以怀疑这些群不是剩余有限的,这意味着存在一个非剩余有限的双曲群。Belegradek还计划通过Allcock-Carlson-Toledo最近的深入工作来研究更复杂的超平面补的相对双曲性,这些超平面补作为代数曲面的模空间出现。负弯曲的尖点末端可以通过塌缩理论来研究,但是只有当曲率为负时,才有全面的结构理论。该项目旨在研究可以构建具有良好几何特性的尖点横截面的情况,以确保尖点横截面崩溃。 这建立在Belegradek的工作与Kapovitch在负捏的情况下,以及开创性的工作由Cheeger,格罗莫夫,福谷,荣。其他项目涉及收敛的流形下的曲率下限。为了改进佩雷尔曼的稳定性定理,计划研究允许DC(差分凹)结构的流形的拓扑,可能应用于光滑稳定性,以及与亚历山德罗夫空间几何的自然联系。另一个项目是证明山口和福谷的纤维化定理的相对版本,预期应用于非负弯曲开流形中灵魂的法丛的坍塌和有限性。坍塌理论研究在一定小尺度下出现的低维空间,其基本目标是理解合适曲率假设下坍塌区域的结构。双曲性是一种将几何洞察力带入其他刚性代数对象的方法。这两个概念可以结合在一起,因为双曲面可以防止大部分空间的塌陷,这给了我们希望,可以详细描述塌陷的部分。所提出的研究可能揭示几何和群论中的几个基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Belegradek其他文献
Connectedness properties of the space of complete nonnegatively curved planes
- DOI:
10.1007/s00208-014-1159-7 - 发表时间:
2014-12-10 - 期刊:
- 影响因子:1.400
- 作者:
Igor Belegradek;Jing Hu - 通讯作者:
Jing Hu
Pinching, Pontrjagin classes, and negatively curved vector bundles
- DOI:
10.1007/pl00005803 - 发表时间:
2001-05-01 - 期刊:
- 影响因子:3.600
- 作者:
Igor Belegradek - 通讯作者:
Igor Belegradek
Erratum to: Connectedness properties of the space of complete nonnegatively curved planes
- DOI:
10.1007/s00208-015-1354-1 - 发表时间:
2016-01-04 - 期刊:
- 影响因子:1.400
- 作者:
Igor Belegradek;Jing Hu - 通讯作者:
Jing Hu
Smoothness of Minkowski sum and generic rotations
- DOI:
10.1016/j.jmaa.2017.01.088 - 发表时间:
2017-06-15 - 期刊:
- 影响因子:
- 作者:
Igor Belegradek;Zixin Jiang - 通讯作者:
Zixin Jiang
An introduction to the volume conjecture. Interactions between hyperbolic geometry, quantum topology and number theory
体积猜想简介。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kathrin Bringmann;Kazuhiro Hikami;and Jeremy Lovejoy;Nobuhiro Innami;藤岡敦;Igor Belegradek;藤岡敦;Hitoshi Murakami - 通讯作者:
Hitoshi Murakami
Igor Belegradek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Belegradek', 18)}}的其他基金
Geometric Group Theory on the Gulf Coast
墨西哥湾沿岸的几何群论
- 批准号:
1360048 - 财政年份:2014
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
Geometric Group Theory on the Gulf Coast
墨西哥湾沿岸的几何群论
- 批准号:
1104098 - 财政年份:2011
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
Deformations and Collapsing of Curved Spaces
弯曲空间的变形和塌陷
- 批准号:
1105045 - 财政年份:2011
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
Geometric Group Theory on the Gulf Coast
墨西哥湾沿岸的几何群论
- 批准号:
0737851 - 财政年份:2008
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
Collapsing, pinching, and curvature bounds
折叠、收缩和曲率边界
- 批准号:
0503864 - 财政年份:2005
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
Topology and Geometry of Manifolds with Lower Curvature Bounds
具有较低曲率界限的流形的拓扑和几何
- 批准号:
0352576 - 财政年份:2003
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
Topology and Geometry of Manifolds with Lower Curvature Bounds
具有较低曲率界限的流形的拓扑和几何
- 批准号:
0203979 - 财政年份:2002
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
相似国自然基金
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
- 批准号:
2341354 - 财政年份:2024
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
Functoriality for Relative Trace Formulas
相对迹公式的函数性
- 批准号:
2401554 - 财政年份:2024
- 资助金额:
$ 15.18万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Expectations and Noisy-Channel Processing of Relative Clauses in a verb-initial language
博士论文研究:动词开头语言中关系从句的期望和噪声通道处理
- 批准号:
2235106 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Standard Grant
2/2: Pediatric Prehospital Airway Resuscitation Trial (Pedi-PART)
2/2:儿科院前气道复苏试验 (Pedi-PART)
- 批准号:
10738147 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
- 批准号:
10575081 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Establishing the relative importance of a rainforest microcosm in oil palm plantations
确定雨林微观世界在油棕榈种植园中的相对重要性
- 批准号:
2881513 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Studentship
Early Life Pulmonary Infection, Microbiome and Trained Innate Immunity
生命早期肺部感染、微生物组和经过训练的先天免疫
- 批准号:
10677304 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别: