Charge transport through single redox molecules and water bridges
通过单个氧化还原分子和水桥的电荷传输
基本信息
- 批准号:1105558
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will be supported by the Chemical Structure, Dynamics, and Mechanisms Program (CSDM) and the Macromolecular, Supramolecular and Nanochemistry Program (MSN) of the Division of Chemistry. In this study, Professor Nongjian Tao and his research group at Arizona State University will develop single molecule break-junction techniques to study electronic conductance through polyaromatic hydrocarbon molecules and molecular bridge structures formed from water. Studying electron transport in single molecules is a necessary step towards the ultimate goal of building electronic devices based on single molecules, and it is also critical for a better understanding of many chemical and biological processes, such as electrochemical reactions, respiration and bioenergetics. Important questions that this project will address include: What is the most efficient electron transport via a single molecule? What are the factors that limit us from achieving the most efficient electron transport? How can one understand and overcome these limiting factors, thus controlling the charge transport efficiency? In order to have a direct impact on electron transfer phenomena in biological and electrochemical systems, one must understand the role of water molecules in electron transport. This project will thus address also questions regarding water molecules: Is it possible to directly measure the formation of hydrogen-bonded networks of water molecules between two electrodes? If so, what are the conductivities of different hydrogen-bonded networks of water bridges? Is there quantum interference between different electron transport pathways associated with the networks? In order to provide students with interdisciplinary and international training experience, this project will leverage several on-campus undergraduate and graduate research programs to recruit and train students from chemistry and other programs; host international students and collaborate with international researchers; and start a community outreach program via working with local public schools that have large minority enrollments.
该项目将得到化学系的化学结构、动力学和机制计划(CSDM)以及大分子、超分子和纳米化学计划(MSN)的支持。在这项研究中,亚利桑那州立大学陶农建教授及其研究小组将开发单分子断裂-结技术,通过多环芳烃分子和由水形成的分子桥结构来研究电子电导。 研究单分子中的电子输运是实现基于单分子构建电子器件的最终目标的必要步骤,对于更好地理解许多化学和生物过程,如电化学反应,呼吸和生物能量学也至关重要。该项目将解决的重要问题包括:通过单个分子最有效的电子传输是什么?哪些因素限制了我们实现最有效的电子传输?如何理解和克服这些限制因素,从而控制电荷传输效率?为了对生物和电化学系统中的电子传递现象产生直接影响,必须了解水分子在电子传递中的作用。因此,该项目还将解决有关水分子的问题:是否可以直接测量两个电极之间水分子氢键网络的形成?如果是这样的话,不同氢键网络的水桥的电导率是多少?在与网络相关的不同电子传输路径之间是否存在量子干涉? 为了为学生提供跨学科和国际培训经验,该项目将利用几个校内本科和研究生研究项目,从化学和其他项目中招募和培训学生;接待国际学生并与国际研究人员合作;并通过与当地公立学校合作启动社区外展计划,这些学校有大量少数民族入学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nongjian Tao其他文献
Detection of molecules and charges with a bright field optical microscope
使用明场光学显微镜检测分子和电荷
- DOI:
10.1021/acs.analchem.9b05750 - 发表时间:
2020 - 期刊:
- 影响因子:7.4
- 作者:
Hao Zhu;Guangzhong Ma;Zijian Wan;Hui Wang;Nongjian Tao - 通讯作者:
Nongjian Tao
Pushing the right button
按下正确的按钮
- DOI:
10.1038/nchem.194 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:20.200
- 作者:
Nongjian Tao - 通讯作者:
Nongjian Tao
Nongjian Tao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nongjian Tao', 18)}}的其他基金
IDBR: Plasmonic-based electrochemical impedance microscopy for studying molecular binding and cellular processes
IDBR:基于等离子体的电化学阻抗显微镜,用于研究分子结合和细胞过程
- 批准号:
1151005 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
An integrated hybrid system for environmental health applications
用于环境健康应用的集成混合系统
- 批准号:
0925496 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Single Molecular Devices for Molecular Nanocomputing: Synthesis, Device Fabrication and Theory
合作研究:用于分子纳米计算的单分子器件:合成、器件制造和理论
- 批准号:
0726902 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Electrochemical Control of Electron Transport in Single Redox Molecules
单个氧化还原分子中电子传输的电化学控制
- 批准号:
0554786 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Studying single ions and molecules with atomic-scale wires and gaps
研究具有原子级导线和间隙的单个离子和分子
- 批准号:
0243423 - 财政年份:2003
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Quantum Transport in Electrochemically Fabricated Metallic Nanoconstrictions
电化学制造的金属纳米收缩中的量子传输
- 批准号:
0196567 - 财政年份:2001
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Quantum Transport in Electrochemically Fabricated Metallic Nanoconstrictions
电化学制造的金属纳米收缩中的量子传输
- 批准号:
9818073 - 财政年份:1999
- 资助金额:
$ 42万 - 项目类别:
Continuing grant
相似国自然基金
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
- 批准号:82371144
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
BNIP-2调控E-cadherin细胞内分选运输的机制研究
- 批准号:32100540
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
磷脂分子参与植物细胞器互作及自噬的调控机制
- 批准号:91954206
- 批准年份:2019
- 资助金额:301.0 万元
- 项目类别:重大研究计划
IRE1α-XBP1在脂肪细胞和肝细胞间跨细胞信号传导机制研究
- 批准号:31900564
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
活细胞高分辨率成像解析clathrin介导的内吞囊泡形成早期内体的分子机制
- 批准号:31970659
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
膜蛋白TMED10调节非经典分泌分子机制的研究
- 批准号:31872832
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
TBC1d23调节细胞器互作及突变引起脑桥小脑发育不全的机制研究
- 批准号:91854121
- 批准年份:2018
- 资助金额:89.0 万元
- 项目类别:重大研究计划
NRT1.1磷酸化修饰调控植物侧根发育的分子细胞学机制研究
- 批准号:31871424
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
细胞分泌的调控及相关肠炎的机理研究
- 批准号:31871429
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Spin-Dependent Charge Transport through Chiral Assemblies
通过手性组装的自旋相关电荷传输
- 批准号:
2004238 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Development of 2D Materials with High Optical Sensitivity and Efficient Charge Transport Through Local Chemical Modification
职业:通过局部化学改性开发具有高光学灵敏度和高效电荷传输的二维材料
- 批准号:
1848309 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Studying charge transport through chemically modified graphene near the metal-insulator transition
研究金属-绝缘体转变附近化学改性石墨烯的电荷传输
- 批准号:
525837-2018 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
University Undergraduate Student Research Awards
Charge/ Hydrogen -Transport and -Storage through the Exchanging Reactions in Redox Polymers
通过氧化还原聚合物中的交换反应进行电荷/氢的传输和存储
- 批准号:
18H03921 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
An integrated study of ion dynamics and population distributions to understand the molecular underpinnings of charge transport through self-assembled solid polymer electrolytes
离子动力学和粒子分布的综合研究,以了解通过自组装固体聚合物电解质进行电荷传输的分子基础
- 批准号:
1805345 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Exploiting geometry-induced conjugation breaks to control charge transport through molecular junctions.
利用几何诱导的共轭断裂来控制通过分子连接的电荷传输。
- 批准号:
502379-2017 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Postdoctoral Fellowships
Study on excited-electron transport through Si oxide thick films relating with charge-up compensation during XPS measurement
XPS 测量过程中与充电补偿相关的氧化硅厚膜激发电子传输研究
- 批准号:
17K05068 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SusChEM: Engineering Charge Transport through Directed Orientation of Transition Metal Dichalcogenide Catalysts
合作研究:SusChEM:通过过渡金属二硫属化物催化剂定向定向进行工程电荷传输
- 批准号:
1704975 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Exploiting geometry-induced conjugation breaks to control charge transport through molecular junctions.
利用几何诱导的共轭断裂来控制通过分子连接的电荷传输。
- 批准号:
502379-2017 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Postdoctoral Fellowships
Collaborative Research: SusChEM: Engineering Charge Transport through Directed Orientation of Transition Metal Dichalcogenide Catalysts
合作研究:SusChEM:通过过渡金属二硫属化物催化剂定向定向进行工程电荷传输
- 批准号:
1703655 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant














{{item.name}}会员




