Disordered Systems and Stochastic Growth Phenomena

无序系统和随机增长现象

基本信息

  • 批准号:
    1105509
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-10-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. This award supports research and education in theoretical condensed matter physics in two related subjects: disordered systems and stochastic growth phenomena.The projects the PI will engage on disordered systems include: the study of conformal invariance, multifractal critical functions, and symmetry of multifractal spectra at Anderson transitions; critical states and the integer quantum Hall effect in low magnetic fields; general network models for Anderson localization in all symmetry classes and the supersymmetry method for them; the theory of quantum Hall transitions and other disordered critical points in two dimensions based on conformal restriction theory and Schramm-Loewner evolution; localization and Anderson transitions in class D, including the random bond Ising model; network models with structural disorder, and other disordered systems on random surfaces.In the area of stochastic growth the specific projects will be the Schramm-Loewner evolution for critical systems with extended chiral symmetries: Wess-Zumino-Witten models and parafermionc theories; theoretical and mathematical aspects of conformal restriction in the bulk; models of stochastic growth interpolating between deterministic Laplacian growth and stochastic diffusion-limited aggregation and similar processes; stochastic perturbations of general classical integrable systems.The proposed theoretical developments connect with experimental studies of quantum Hall transitions and of various driven systems exhibiting unstable interfacial motion. The research will also make contact with direct computer simulations through collaborators who are experts in large-scale numerical simulations. The research has a strong education component involving the training of graduate students, and involves substantial international collaboration with research teams in France, Germany, and Japan, which will enrich the research enterprise in the physical sciences in the US.NON-TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. This award supports research and education in theoretical condensed matter physics in two related subjects: disordered systems and stochastic growth phenomena. Impurities, lattice imperfections, and other forms of disorder crucially affect properties of electronic and other materials. Disorder alone can prevent electric current from flowing, turning a metal into an insulator. This is a consequence of the wave nature of the electron and the interference of electron waves scattered by impurities. The PI will use sophisticated theoretical concepts and mathematical methods to advance understanding of this transformation between a metal and an insulator as the amount of disorder is varied. The PI will also study how this transformation takes place in a quantum Hall system where electron conduction is richly complex. A quantum Hall system is a gas of electrons confined to a plane in an artificial semiconductor structure with an applied magnetic field perpendicular to the plane. The conduction of electrons through a quantum Hall system varies in interesting ways depending on the strength of the magnetic field. Of particular interest is the effect of the interplay of the magnetic field with disorder on the conduction of electrons through a quantum Hall system. The PI will also use sophisticated mathematical methods to advance understanding of random patterns that arise in growth. Examples of such patterns are evident in soot particles, bacterial colonies grown in a Petri dish, fingered patterns of minerals deposited by water seeping through porous rock, and vortices in turbulent fluid flows. The shapes that arise are generally rough and fractal - when examined more closely, a magnified image looks the same as the unaided image. These fractals are often driven by random forces, requiring their characterization in terms of probabilities. The research has a strong education component involving the training of graduate students, and involves substantial international collaboration with research teams in France, Germany, and Japan, which will enrich the research enterprise in the physical sciences in the US.
材料研究部和数学科学部为该奖项提供资金。该奖项支持理论凝聚态物理学在无序系统和随机增长现象两个相关学科的研究和教育。PI将从事无序系统的项目包括:共形不变性,多重分形临界函数和多重分形谱在安德森跃迁的对称性的研究;临界态和低磁场中的整数量子霍尔效应;介绍了各种对称类中安德森局域化的一般网络模型及其超对称方法,基于共形约束理论和Schramm-Loewner演化的二维量子霍尔跃迁和其它无序临界点理论,D类局域化和安德森跃迁,包括无规键Ising模型;在随机增长领域,具体项目将是具有扩展手征对称性的临界系统的Schramm-Loewner演化:Wess-Zumino-维滕模型和仿费米理论;本体共形限制的理论和数学方面;在确定性拉普拉斯增长和随机扩散限制聚集和类似过程之间插值的随机增长模型;一般经典可积系统的随机扰动。所提出的理论发展与量子霍尔跃迁的实验研究和各种驱动的表现出不稳定的界面运动的系统。该研究还将通过大规模数值模拟专家的合作者与直接计算机模拟联系。这项研究有一个强大的教育成分,涉及研究生的培训,并涉及大量的国际合作,在法国,德国和日本的研究团队,这将丰富在美国的物理科学研究企业。非技术总结材料研究部和数学科学部贡献资金,这个奖项。该奖项支持两个相关主题的理论凝聚态物理学研究和教育:无序系统和随机增长现象。杂质、晶格缺陷和其他形式的无序严重影响电子和其他材料的性能。无序本身就能阻止电流流动,使金属变成绝缘体。这是电子的波动性质和杂质散射的电子波干涉的结果。PI将使用复杂的理论概念和数学方法来推进对金属和绝缘体之间的这种转变的理解,因为无序的量是不同的。PI还将研究这种转变如何在电子传导非常复杂的量子霍尔系统中发生。量子霍尔系统是一种电子气体,被限制在人工半导体结构中的一个平面上,外加磁场垂直于该平面。电子通过量子霍尔系统的传导以有趣的方式变化,这取决于磁场的强度。特别感兴趣的是磁场与无序的相互作用对电子通过量子霍尔系统的传导的影响。 PI还将使用复杂的数学方法来促进对生长中出现的随机模式的理解。这种模式的例子是明显的煤烟颗粒,细菌菌落生长在培养皿中,指状图案的矿物沉积的水渗透通过多孔岩石,涡流在湍流流体流动。出现的形状通常是粗糙和分形的-当更仔细地检查时,放大的图像看起来与未辅助的图像相同。这些分形通常由随机力驱动,需要用概率来表征。该研究具有很强的教育成分,涉及研究生的培训,并涉及与法国,德国和日本的研究团队的大量国际合作,这将丰富美国物理科学的研究企业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Gruzberg其他文献

Ilya Gruzberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Gruzberg', 18)}}的其他基金

Geometry, topology, and dynamics in quantum Hall effects and related phenomena
量子霍尔效应及相关现象中的几何、拓扑和动力学
  • 批准号:
    1508255
  • 财政年份:
    2015
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Disordered Systems and Stochastic Growth Phenomena
无序系统和随机增长现象
  • 批准号:
    1455406
  • 财政年份:
    2013
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
CAREER: Disordered Systems and Stochastic Growth Phenomena
职业:无序系统和随机增长现象
  • 批准号:
    0448820
  • 财政年份:
    2005
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Research Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
  • 批准号:
    2348164
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
CAREER: Identifying emergent dynamics in stochastic systems
职业:识别随机系统中的新兴动态
  • 批准号:
    2238667
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
  • 批准号:
    2246838
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Spatial Systems
职业:随机空间系统
  • 批准号:
    2238272
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
  • 批准号:
    2317583
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了