Model Reduction Methods for Extended Quantum Systems: Analysis and Applications

扩展量子系统的模型简化方法:分析与应用

基本信息

  • 批准号:
    2309814
  • 负责人:
  • 金额:
    $ 11.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Much recent development in materials science and chemistry involves quantum properties of the underlying systems. Quantum properties are often studied as if the system of interest is isolated and evolves by itself, but in practice, a quantum system is always coupled with its surrounding environment. Direct simulations of such a system can result in overwhelming computational costs. There is a strong demand for simplified models and efficient simulation algorithms so that people can study quantum systems - such as semiconductors and nanoelectronic devices - while retaining realistic complexity. This project tackles the fundamental challenge of simulating an extended system with quantum degrees of freedom by developing new models and data-assimilation methods. The project will provide research training opportunities for undergraduates.This project will focus on a Galerkin-projection-based model-reduction framework. This project will aim to separate the quantum system from its surrounding environment and describe the dynamics with fewer variables. This project will provide rigorous error analysis of the model-reduction method and consider a nonparametric data-driven approach to estimate the system properties from data observations. As an interdisciplinary project, this project will bridge techniques from different disciplines, including mathematics, physics, chemistry, and quantum computing, and give rise to more accurate and reliable models that can be implemented to accelerate computationally heavy problems of different disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料科学和化学的最新发展涉及到底层系统的量子性质。量子性质的研究通常被认为是感兴趣的系统是孤立的,并自行演化,但在实践中,量子系统总是与其周围环境耦合。对这样一个系统的直接模拟可能会导致巨大的计算成本。人们迫切需要简化的模型和高效的模拟算法,以便人们在研究量子系统--如半导体和纳米电子器件--的同时,保持现实的复杂性。这个项目通过开发新的模型和数据同化方法来解决模拟具有量子自由度的扩展系统的根本挑战。该项目将为本科生提供研究培训机会。该项目将侧重于基于Galerkin投影的模型简化框架。这个项目的目标是将量子系统与其周围环境分开,并用更少的变量来描述动力学。该项目将对模型简化方法进行严格的误差分析,并考虑使用非参数数据驱动的方法来从数据观测中估计系统特性。作为一个跨学科的项目,这个项目将连接不同学科的技术,包括数学、物理、化学和量子计算,并产生更准确和可靠的模型,这些模型可以用来加速不同学科的计算繁重的问题。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiqi Chu其他文献

Modeling, Inference, and Prediction in Mobility-Based Compartmental Models for Epidemiology
基于移动性的流行病学区室模型的建模、推理和预测
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ning Jiang;Weiqi Chu;Yao Li
  • 通讯作者:
    Yao Li
Safety issues of children age 3-5 years in school classrooms: a perspective of classrooms in the United States
学校教室中 3-5 岁儿童的安全问题:美国教室的视角
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiqi Chu
  • 通讯作者:
    Weiqi Chu
Electrohydrodynamics modeling of droplet actuation on a solid surface by surfactant-mediated electrodewetting
通过表面活性剂介导的电润湿对固体表面上的液滴驱动进行电流体动力学建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Weiqi Chu;H. Ji;Qining Wang;Chang;A. Bertozzi
  • 通讯作者:
    A. Bertozzi

Weiqi Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiqi Chu', 18)}}的其他基金

Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
  • 批准号:
    2350325
  • 财政年份:
    2023
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Continuing Grant

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
  • 批准号:
    2350325
  • 财政年份:
    2023
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Continuing Grant
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
  • 批准号:
    RGPIN-2021-02693
  • 财政年份:
    2022
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Discovery Grants Program - Individual
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
  • 批准号:
    RGPIN-2021-02693
  • 财政年份:
    2021
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of dynamics of hydrogen-rich flames, development of new methods for validation of mechanisms of chemical kinetics and for model reduction
研究富氢火焰的动力学,开发化学动力学机制验证和模型简化的新方法
  • 批准号:
    382408926
  • 财政年份:
    2017
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Research Grants
Error-controlled model order reduction by adaptive and cumulative choice of expansion points in Krylov subspace methods
通过 Krylov 子空间方法中扩展点的自适应和累积选择来降低误差控制模型阶数
  • 批准号:
    256173540
  • 财政年份:
    2014
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Research Grants
Model Order Reduction Techniques for Electro-Quasistatic Simulation Methods in Electrical Power Transmission Technology
电力传输技术中电准静态仿真方法的模型降阶技术
  • 批准号:
    228468815
  • 财政年份:
    2012
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Research Grants
Development of Model-based Control Methods of Automotive Engines for Energy Saving and Emission Reduction
基于模型的汽车发动机节能减排控制方法开发
  • 批准号:
    23360186
  • 财政年份:
    2011
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multivariate Interpolation Methods for Parametric Model Reduction (MIM4PMOR)
用于参数模型缩减的多元插值方法 (MIM4PMOR)
  • 批准号:
    201063239
  • 财政年份:
    2011
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Research Grants
Model Reduction with Rational Krylov Methods
使用 Rational Krylov 方法简化模型
  • 批准号:
    0505971
  • 财政年份:
    2005
  • 资助金额:
    $ 11.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了