Geometric Submanifolds of Manifolds
流形的几何子流形
基本信息
- 批准号:1105710
- 负责人:
- 金额:$ 14.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is centers around understanding Riemannian manifolds via submanifolds. This topic and these methods have been central in Riemannian geometry since its conception, and have direct ties to problems and methods in geometric group theory. With regard to submanifolds, the PI seeks to further investigate the geometric data encoded by the primitive totally geodesic submanifolds of a fixed Riemannian n-manifold. The simplest case of 1-dimensional totally geodesic submanifolds is nothing more than the geodesic length spectrum and has garnered interest for more than 50 years. In addition, the geodesic length spectrum has strong connections with the eigenvalue spectrum of the Laplace-Beltrami operator and analysis on manifolds. In addition to this study, the PI plans on investigating which manifolds arise as totally geodesic submanifolds of a fixed Riemannian manifold. Two cases are locally symmetric manifolds of non-compact type and the moduli space of genus g curves with n marked points. In the latter case, most prominent are the Teichmuller curves and their associated fundamental groups Veech groups, which are interesting geometrically, algebro-geometrically, and dynamically. In addition, the PI seeks obstructions or special properties of submanifolds of a fixed manifold, not only in an effort to understand the fixed manifold but also to better understand obstructions to isometrically immersing manifolds into other manifolds. Lastly, the PI plans to investigate the asymptotic behavior of geometric counting functions, what geometric data is encoded by these functions, and ties to this topic outside of geometry. These function counting the totally geodesic manifolds of a fixed type as a function of volume and a basic entities, which in the simplest cases are known to have ties to geometric dynamics and applications to number theory.The objects that arise in the present proposal permeate mathematics as fundamental examples tied to basic problems and areas. They were fathered not by mathematics but from pure and applied science. Moreover, over time, have been proven to be centrally important not only in mathematics but in physics, chemistry, and computer science. The PI hopes to foster further these important connections not only directly with specific results but also in disseminating the core ideaology of the PI's proposal.
这个项目的中心是通过子流形来理解黎曼流形。这一主题和这些方法从黎曼几何的概念开始就一直是它的中心,并与几何群论中的问题和方法有直接的联系。对子流形,PI试图进一步研究固定黎曼n-流形的本原全测地子流形所编码的几何数据。一维全测地子流形最简单的情况就是测地线长度谱,50多年来一直受到人们的关注。此外,测地线长度谱与Laplace-Beltrami算子的本征值谱和流形上的分析有很强的联系。除了这项研究之外,PI还计划研究哪些流形是固定黎曼流形的全测地子流形。两种情形是局部对称的非紧型流形和具有n个标记点的亏格g曲线的模空间。在后一种情况下,最突出的是TeichMuller曲线及其相关的基本群Veech群,它们在几何、代数几何和动力学上都很有趣。此外,PI寻找固定流形的子流形的障碍或特殊性质,不仅是为了理解固定流形,也是为了更好地理解等距浸入其他流形的障碍。最后,PI计划研究几何计数函数的渐近行为,这些函数编码了哪些几何数据,并与几何之外的主题联系在一起。这些函数将固定类型的全测地流形计数为体积和基本实体的函数,在最简单的情况下,已知这些实体与几何动力学和数论的应用有关。在本提案中出现的目的渗透到数学中,作为与基本问题和领域相关的基本例子。他们不是数学之父,而是纯粹的应用科学之父。此外,随着时间的推移,它们不仅在数学中,而且在物理、化学和计算机科学中都被证明是核心重要的。国际和平协会希望进一步促进这些重要的联系,不仅直接取得具体成果,而且还传播国际和平协会提案的核心理念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David McReynolds其他文献
Managing the cracked and deeply carious tooth: a case report
管理破裂和严重龋齿的牙齿:病例报告
- DOI:
10.1038/s41415-024-8010-7 - 发表时间:
2025-03-14 - 期刊:
- 影响因子:2.300
- 作者:
Zi En Lim;Henry F. Duncan;David McReynolds - 通讯作者:
David McReynolds
David McReynolds的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David McReynolds', 18)}}的其他基金
Geometry and Groups: Enumeration and Finite Representations
几何和群:枚举和有限表示
- 批准号:
1812153 - 财政年份:2018
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
Geometry and groups: Structure and complexity
几何和群:结构和复杂性
- 批准号:
1408458 - 财政年份:2014
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
相似海外基金
Hyperbolic Manifolds, Geodesic Submanifolds, and Rigidity for Rank-1 Lattices
双曲流形、测地线子流形和 1 阶晶格的刚度
- 批准号:
2300370 - 财政年份:2022
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
- 批准号:
2243188 - 财政年份:2022
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
- 批准号:
2203885 - 财政年份:2022
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
Cayley submanifolds in Spin(7)-manifolds
Spin(7) 流形中的 Cayley 子流形
- 批准号:
2422851 - 财政年份:2020
- 资助金额:
$ 14.6万 - 项目类别:
Studentship
Hyperbolic Manifolds, Geodesic Submanifolds, and Rigidity for Rank-1 Lattices
双曲流形、测地线子流形和 1 阶晶格的刚度
- 批准号:
2005438 - 财政年份:2020
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
Submanifolds and Foliations in Riemannian Manifolds
黎曼流形中的子流形和叶状结构
- 批准号:
1810913 - 财政年份:2018
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
Global open submanifolds of compact complex manifolds
紧复流形的全局开子流形
- 批准号:
19K21024 - 财政年份:2018
- 资助金额:
$ 14.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Submanifolds with conical singularities in manifolds with special holonomy
特殊完整流形中具有圆锥奇点的子流形
- 批准号:
17K14181 - 财政年份:2017
- 资助金额:
$ 14.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the Calabi-Yau manifolds and the special Lagrangian submanifolds from the view point of differential geometry
从微分几何的角度论Calabi-Yau流形和特殊拉格朗日子流形
- 批准号:
16K17598 - 财政年份:2016
- 资助金额:
$ 14.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on special Lagrangian submanifolds in non-flat Calabi-Yau manifolds
非平坦Calabi-Yau流形中特殊拉格朗日子流形的研究
- 批准号:
23740057 - 财政年份:2011
- 资助金额:
$ 14.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




