Geometry and Groups: Enumeration and Finite Representations

几何和群:枚举和有限表示

基本信息

  • 批准号:
    1812153
  • 负责人:
  • 金额:
    $ 22.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The richest symmetry groups in nature are exemplified by the collection of all rotations of a two-dimensional sphere or the collection of all rigid motions of the Euclidean plan. The operations of applying two symmetries in order, and of inverting a symmetry to get another one, endow these sets of symmetries with the structure known in mathematics as a group. Many other groups arise as subgroups of these groups of continuous motions, modeled on the group of rigid motions of a planar tiling and its relationship to the full group of isometries of the Euclidean plan. Number theory give rise to many of these examples, with constructions that are analogous to the discrete, widely separated way that the integers sit within the real number line. One of the projects to be pursued seeks to find a computationally feasible way to list all of the arithmetically defined discrete subgroups of motion within the most important groups of continuous motions.The continuous groups of motion referred to above are known in mathematics as semisimple Lie groups; Sophus Lie was the nineteenth-century mathematician who discovered the basic structural facts of such groups of continuous transformations, and semisimplicity is an algebraic property shared by most of the important examples. The first line of work planned will recursively enumerate arithmetic lattices in semisimple Lie groups, providing a solution to the isomorphism problem for this class of groups and addressing a conjecture of Belolipetsky and Lubotzky on the number of isometries between distinct finite covers of an arithmetic manifold. A second line of investigation concerns the relationship between a manifold and its finite-sheeted covering spaces, which is encoded in the profinite completion of the manifold's fundamental group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界中最丰富的对称群的例子是二维球体的所有旋转的集合或欧几里得平面的所有刚性运动的集合。 将两个对称性按顺序应用,以及将一个对称性反转以得到另一个对称性的操作,赋予了这些对称性集合以数学中已知的群结构。 许多其他的群作为这些连续运动群的子群出现,以平面平铺的刚性运动群及其与欧几里得平面的等距全群的关系为模型。 数论给出了许多这样的例子,其结构类似于离散的、广泛分离的整数位于真实的数行中的方式。其中一个项目是寻找一种计算上可行的方法,列出最重要的连续运动群中所有算术定义的离散运动子群。索菲斯·李是19世纪的数学家,他发现了这种连续变换群的基本结构事实,而半单性是大多数重要例子所共有的代数性质。第一行的工作计划将递归枚举算术格在半单李群,提供了一个解决方案的同构问题,这类群体和解决一个猜想Belolipetsky和Lubotzky之间的数量isometries不同的有限覆盖的算术流形。 第二条调查线涉及流形和它的有限片覆盖空间之间的关系,这是编码在流形的基本group.This奖项的profinite完成反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fat Flats in Rank One Manifolds
一级流形中的脂肪公寓
  • DOI:
    10.1307/mmj/1549681300
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Constantine, D.;Lafont, J.-F.;McReynolds, D. B.;Thompson, D. J.
  • 通讯作者:
    Thompson, D. J.
Absolute profinite rigidity and hyperbolic geometry
绝对有限刚度和双曲几何
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    M. R. Bridson, D. B.
  • 通讯作者:
    M. R. Bridson, D. B.
On the profinite rigidity of triangle groups
论三角形群的有限刚度
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. R. Bridson, D. B.
  • 通讯作者:
    M. R. Bridson, D. B.
Determining hyperbolic 3-manifolds by their surfaces
通过表面确定双曲 3 流形
Coarse models of homogeneous spaces and translations-like actions
同质空间和类平移动作的粗略模型
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. B. McReynolds, Mark Pengitore
  • 通讯作者:
    D. B. McReynolds, Mark Pengitore
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David McReynolds其他文献

Managing the cracked and deeply carious tooth: a case report
管理破裂和严重龋齿的牙齿:病例报告
  • DOI:
    10.1038/s41415-024-8010-7
  • 发表时间:
    2025-03-14
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Zi En Lim;Henry F. Duncan;David McReynolds
  • 通讯作者:
    David McReynolds

David McReynolds的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David McReynolds', 18)}}的其他基金

Geometry and groups: Structure and complexity
几何和群:结构和复杂性
  • 批准号:
    1408458
  • 财政年份:
    2014
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Geometric Submanifolds of Manifolds
流形的几何子流形
  • 批准号:
    1105710
  • 财政年份:
    2011
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703694
  • 财政年份:
    2007
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Fellowship Award

相似海外基金

Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
  • 批准号:
    ES/Y010639/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Research Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
  • 批准号:
    2402553
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
  • 批准号:
    2346615
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
  • 批准号:
    23K25768
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
'Leaders Like Us': Co-designing a framework to develop young physical activity leader programmes for girls from underserved groups
“像我们这样的领导者”:共同设计一个框架,为来自服务不足群体的女孩制定年轻的体育活动领导者计划
  • 批准号:
    MR/Z503976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
  • 批准号:
    2241230
  • 财政年份:
    2024
  • 资助金额:
    $ 22.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了