Hyperbolic Manifolds, Geodesic Submanifolds, and Rigidity for Rank-1 Lattices

双曲流形、测地线子流形和 1 阶晶格的刚度

基本信息

  • 批准号:
    2005438
  • 负责人:
  • 金额:
    $ 14.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Geometry is broadly focused on studying manifolds (multi-dimensional shapes) and their intrinsic properties, such as volume, curvature, and lengths of curves between two points on the manifold. In this field, understanding symmetries of a given manifold plays a key role in studying its other geometric properties. These symmetries are encoded in an algebraic construction called the fundamental group; this project aims at studying the connections between this group and geometry. Specifically, among hyperbolic manifolds there is a special class called "arithmetic" that tend to be the most symmetric and whose fundamental group has strong connections to number theory. This project aims to use new techniques in geometry and dynamics to study the fundamental group of hyperbolic manifolds in an attempt to understand when such a group is arithmetic and the ramifications of arithmeticity (or lack thereof) on the geometry of the associated manifold. Broader impacts of this project include work with undergraduates.More specifically, the overarching goal of this research project is twofold -- to better understand the classification of hyperbolic manifolds and their geodesic geometry and to build a robust framework for exploring rigidity phenomenon for fundamental groups of finite-volume real, complex, quaternionic, and Cayley hyperbolic manifolds. The principal investigator has recently made a series of advances that facilitate the development of geometric, group theoretic, and dynamical techniques for understanding the geodesic geometry of manifolds built by gluing submanifolds of arithmetic manifolds, as well as the development of superrigidity style techniques for lattices in the isometry group of real hyperbolic space. This project plans to continue to develop these new techniques with an eye toward geometric applications. Specifically, the project will address the following broad themes: 1) understanding constructions of both low- and high-dimensional hyperbolic manifolds and their geodesic submanifolds, 2) further developing a general framework for superrigidity results for rank-1 lattices, and 3) attempting to use recent advances in rank-1 rigidity as a mechanism to understand integrality of complex hyperbolic lattices and arithmeticity of quaternionic and Cayley hyperbolic spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何学广泛地集中在研究流形(多维形状)及其内在性质,如体积,曲率和流形上两点之间的曲线长度。在这一领域中,对流形的对称性的理解对于研究流形的其他几何性质起着至关重要的作用。这些对称性被编码在一个称为基本群的代数结构中;这个项目旨在研究这个群和几何之间的联系。具体来说,在双曲流形中有一个特殊的类叫做“算术”,它往往是最对称的,其基本群与数论有很强的联系。这个项目的目的是使用几何和动力学的新技术来研究双曲流形的基本群,试图了解这样一个群何时是算术的,以及算术性(或缺乏算术性)对相关流形几何的影响。更具体地说,这个研究项目的首要目标是双重的--更好地理解双曲流形的分类及其测地线几何,并建立一个强大的框架,用于探索有限体积真实的,复,四元数和凯莱双曲流形的基本群的刚性现象。 主要研究者最近取得了一系列进展,促进了几何,群论和动力学技术的发展,以理解通过粘合算术流形的子流形而建立的流形的测地线几何,以及真实的双曲空间的等距群中的格的超刚性风格技术的发展。该项目计划继续开发这些新技术,着眼于几何应用。具体而言,该项目将涉及以下广泛主题:1)理解低维和高维双曲流形及其测地子流形的构造,2)进一步发展秩1格的超刚性结果的一般框架,(3)试图利用最新的等级进步-1刚性作为理解复双曲格的完整性和四元数和凯莱双曲空间的算术性的机制。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finiteness of maximal geodesic submanifolds in hyperbolic hybrids
双曲杂化中最大测地线子流形的有限性
  • DOI:
    10.4171/jems/1077
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Fisher, David;Lafont, Jean-François;Miller, Nicholas;Stover, Matthew
  • 通讯作者:
    Stover, Matthew
Arithmeticity, superrigidity, and totally geodesic submanifolds
算术性、超刚性和完全测地线子流形
  • DOI:
    10.4007/annals.2021.193.3.4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Bader, Uri;Fisher, David;Miller, Nicholas;Stover, Matthew
  • 通讯作者:
    Stover, Matthew
Areas of totally geodesic surfaces of hyperbolic $3$-orbifolds
双曲$3$-轨道折叠的全测地线曲面面积
  • DOI:
    10.4310/pamq.2021.v17.n1.a1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Linowitz, Benjamin;McReynolds, D. B.;Miller, Nicholas
  • 通讯作者:
    Miller, Nicholas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Miller其他文献

A criminal justice comparative: post-9/11 anti-terrorism legislation within legal traditions
刑事司法比较:9/11后法律传统内的反恐立法
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Miller
  • 通讯作者:
    Nicholas Miller
TCT-160 The Genetic Basis Of Patent Foramen Ovale
  • DOI:
    10.1016/j.jacc.2014.07.197
  • 发表时间:
    2014-09-16
  • 期刊:
  • 影响因子:
  • 作者:
    Nabil Noureddin;Rubine Gevorgyan;Christopher Low;Nicholas Miller;Peter Debbaneh;Xinmin Li;Jonathan Tobis
  • 通讯作者:
    Jonathan Tobis
Substance Abuse in Oncology
肿瘤学中的药物滥用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Passik;Nicholas Miller;Matthew Ruehle;K. Kirsh
  • 通讯作者:
    K. Kirsh
Alliance for a Cavity-Free Future (ACFF) UK Chapter: meeting summary
无龋未来联盟(ACFF)英国分会:会议总结
  • DOI:
    10.1038/s41415-023-6606-y
  • 发表时间:
    2023-12-15
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Avijit Banerjee;Nigel Pitts;Nicholas Miller
  • 通讯作者:
    Nicholas Miller
Definitive LC-MS/MS Drug Monitoring Impacts Substance-use Treatment Planning and Patient Outcomes: A Brief Report
明确的 LC-MS/MS 药物监测影响药物使用治疗计划和患者结果:简要报告
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Adam Rzetelny;B. Zeller;Nicholas Miller;K. Kirsh;S. Passik
  • 通讯作者:
    S. Passik

Nicholas Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Miller', 18)}}的其他基金

Hyperbolic Manifolds, Geodesic Submanifolds, and Rigidity for Rank-1 Lattices
双曲流形、测地线子流形和 1 阶晶格的刚度
  • 批准号:
    2300370
  • 财政年份:
    2022
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
RCN-UBE Incubator: Stem Research on Non-model Genomes Network
RCN-UBE孵化器:非模型基因组网络的干研究
  • 批准号:
    2120626
  • 财政年份:
    2021
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
Agenda Processes and the Theory of Voting
议程流程和投票理论
  • 批准号:
    8509680
  • 财政年份:
    1985
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Continuing Grant
Surfaces in 4-manifolds and modified surgery theory
4 流形表面和改进的手术理论
  • 批准号:
    2347230
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
  • 批准号:
    2304990
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    2247572
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了