Collaborative Research: Research in Stochastic Processes

合作研究:随机过程研究

基本信息

  • 批准号:
    1105990
  • 负责人:
  • 金额:
    $ 11.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

Professors Marcus and Rosen will continue their research on permanental processes. These are positive real valued processes that include processes that are the squares of Gaussian processes. However, whereas Gaussian processes are defined by a positive definite symmetric covariance function, in the definition of permanental processes, the restrictions to symmetry and positive definiteness are not required. Permanental process are the missing link that can be used to extend the Dynkin Isomorphism Theorem to an isomorphism theorem that contains the local times of Markov processes that do not have symmetric potential densities. They also plan to extend the study of permanental processes to permanental fields and to develop new isomorphism theorems that relate them to continuous additive functionals and intersection local times of general Markov processes. They expect to be able to use them to obtain sample path properties of continuous additive functionals and intersection local times. Important phenomena in our lives, like weather, financial markets, voting patterns and detection of enemy activity are so complex that they can only be modeled as random events called stochastic processes. Nevertheless, although these events are random, they all have certain structures, usually different, that enables us to make good predictions about how they behave, so that we can exploit them or defend ourselves against them. Many probabilists study stochastic processes. Our specialization is local times which is a measure of what are the outcomes of these processes and which outcomes are more or less likely. Our motivation is twofold. One is esthetic, because the underlying mathematics is very beautiful. The other is practical, to provide tools for engineers and scientists engaged in protecting us from devastating weather, controlling destructive market fluctuations, analyzing voter patterns, protecting us from enemy missles...the list of potential applications is endless. Devices and techniques employing the most advanced mathematics contribute to the best of the new growth industries and will aid in keeping our country competitive
马库斯教授和罗森教授将继续他们对永久过程的研究。这些是正实值过程包括高斯过程的平方。然而,高斯过程是由正定对称协方差函数定义的,而在永久过程的定义中,不需要对对称性和正定性的限制。永久过程是缺失的一环,可以用来将Dynkin同构定理扩展为包含不具有对称势密度的马尔可夫过程的局部时间的同构定理。他们还计划将永久过程的研究扩展到永久领域,并发展新的同构定理,将它们与连续加性泛函和一般马尔可夫过程的交集局部时间联系起来。他们希望能够使用它们来获得连续加性泛函和交集局部时间的样本路径性质。我们生活中的重要现象,如天气、金融市场、投票模式和对敌人活动的探测,都是如此复杂,以至于它们只能被建模为随机事件,称为随机过程。然而,尽管这些事件是随机的,但它们都有一定的结构,通常是不同的,这使我们能够对它们的行为做出很好的预测,这样我们就可以利用它们或保护自己不受它们的影响。许多概率学家研究随机过程。我们的专长是当地时间这是衡量这些过程的结果以及哪些结果更可能或更不可能的标准。我们的动机是双重的。一个是美学,因为底层的数学是非常美的。另一个是实用的,为工程师和科学家提供工具,保护我们免受破坏性天气的影响,控制破坏性的市场波动,分析选民模式,保护我们免受敌人导弹的攻击……潜在应用的清单是无穷无尽的。采用最先进的数学技术的设备和技术有助于新兴产业的发展,并将有助于保持我国的竞争力

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Rosen其他文献

Position statement on West Nile virus: a committee opinion
  • DOI:
    10.1016/j.fertnstert.2016.01.003
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samantha Practice Committees of the American Society for Reproductive Medicine;Samantha Pfeifer;Daniel Butts;Gregory Dumesic;Clarisa Fossum;Andrew Gracia;Jennifer La Barbera;Randall Mersereau;Richard Odem;Alan Paulson;Margareta Penzias;Robert Pisarska;Richard Rebar;Mitchell Reindollar;Jay Rosen;Michael Sandlow;Eric Vernon; Widra
  • 通讯作者:
    Widra
A local time approach to the self-intersections of Brownian paths in space
Existence of the critical point in φ4 field theory
The effects of edema on urethral dose following palladium-103 prostate brachytherapy.
钯 103 前列腺近距离放射治疗后水肿对尿道剂量的影响。
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    G. Gejerman;E. Mullokandov;A. Saini;V. Lanteri;John Scheuch;J. Vitenson;Jay Rosen;Richard Garden;I. Sawczuk
  • 通讯作者:
    I. Sawczuk
Correction to: Tightness for the cover time of the two dimensional sphere
  • DOI:
    10.1007/s00440-020-00965-y
  • 发表时间:
    2020-03-06
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    David Belius;Jay Rosen;Ofer Zeitouni
  • 通讯作者:
    Ofer Zeitouni

Jay Rosen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay Rosen', 18)}}的其他基金

Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
  • 批准号:
    2331449
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Conference: Northeast Probability Seminar 2022
会议:2022年东北概率研讨会
  • 批准号:
    2243505
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Northeast Probability Seminar 2017-2019
东北概率研讨会2017-2019
  • 批准号:
    1724870
  • 财政年份:
    2017
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Northeast Probability Seminar 2014
2014年东北概率研讨会
  • 批准号:
    1445391
  • 财政年份:
    2014
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Northeast Probability Seminar
东北概率研讨会
  • 批准号:
    1144230
  • 财政年份:
    2011
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Northeast Probability Seminar 2008-2010
东北概率研讨会2008-2010
  • 批准号:
    0836243
  • 财政年份:
    2008
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Northeast Probability Seminar 2007
2007年东北概率研讨会
  • 批准号:
    0734832
  • 财政年份:
    2007
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Research in Stochastic Processes
合作研究:随机过程研究
  • 批准号:
    0706103
  • 财政年份:
    2007
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Northeast Probability Seminar 2004; November 4-5, 2004; New York, NY
东北概率研讨会2004;
  • 批准号:
    0431782
  • 财政年份:
    2004
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Stochastic Processes
数学科学:随机过程研究
  • 批准号:
    8802288
  • 财政年份:
    1988
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了