Novel nonparametric methods for prognosis studies with missing covariates
用于缺失协变量的预后研究的新型非参数方法
基本信息
- 批准号:1106816
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Survival data with missing time-independent or time-dependent covariates are commonly encountered in prognosis studies. Existing approaches mostly focus on the standard proportional hazards model, which may be too restricted in some applications. To obtain a comprehensive understanding of data, it is also important to identify variables that are associated with survival time. In this study, the investigators will develop nonparametric approaches for more flexible models with missing covariates, and investigate variable selection in this complicated setup.The proposed research is expected to have broad impacts and application in biomedical studies, econometrics, environmental studies, behavioral and social sciences, where information is collected on time to an event of interest and multiple covariates. This proposed study will foster collaborations among investigators from different institutions/departments and backgrounds. It will promote teaching, training and learning in the Statistics Department and the newly founded Epidemiology and Biostatistics Department at the University of Georgia. Research conducted in this study will help develop advanced graduate courses in survival analysis, missing data and variable selection. It will create challenging statistical projects for graduate students that the investigators are supervising. Research results from this proposal will be disseminated through presentation at major statistical meetings. Software developed will be made publicly available, so that the proposed methods can be readily used in practice in various fields.
在预后研究中,经常会遇到缺少时间无关或时间相关协变量的生存数据。现有的方法大多集中在标准比例风险模型上,该模型在某些应用中可能会受到太多的限制。为了全面了解数据,确定与生存时间相关的变量也很重要。在这项研究中,研究人员将为更灵活的带有缺失协变量的模型开发非参数方法,并研究这一复杂环境下的变量选择。所提出的研究有望在生物医学、计量经济学、环境研究、行为和社会科学中产生广泛的影响和应用,这些研究将在感兴趣的事件和多个协变量的及时收集信息。这项拟议的研究将促进来自不同机构/部门和背景的调查人员之间的合作。它将促进统计系和佐治亚大学新成立的流行病学和生物统计学系的教学、培训和学习。这项研究将有助于开发生存分析、缺失数据和变量选择方面的高级研究生课程。它将为调查人员正在监督的研究生创造具有挑战性的统计项目。这项提案的研究结果将通过在主要统计会议上的介绍来传播。所开发的软件将公之于众,以便建议的方法可以在各个领域的实践中随时使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Song其他文献
A Load Balancing Scheme Using Federate MigrationBased on Virtual Machines for Cloud Simulation
一种基于云仿真虚拟机联合迁移的负载均衡方案
- DOI:
10.1155/2015/506432 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xiao Song;Yaofei Ma - 通讯作者:
Yaofei Ma
The Study on Cloud Storage Data Management Method Based on Minimum Access Cost for Internet of Things
- DOI:
10.4028/www.scientific.net/amm.198-199.1657 - 发表时间:
2012-09 - 期刊:
- 影响因子:0
- 作者:
Xiao Song - 通讯作者:
Xiao Song
A Novel 3-D Analytical Modeling Method of Trapezoidal Shape Permanent Magnet Halbach Array for Multi-objective Optimization
一种用于多目标优化的梯形永磁 Halbach 阵列的新型 3D 分析建模方法
- DOI:
10.1007/s42835-019-00109-w - 发表时间:
2019-03 - 期刊:
- 影响因子:1.9
- 作者:
Duan Jiaheng;Xiao Song;Zhang Kunlun;Jing Yongzhi - 通讯作者:
Jing Yongzhi
Sparse Random Block-Banded Toeplitz Matrix for Compressive Sensing
用于压缩感知的稀疏随机分块托普利茨矩阵
- DOI:
10.1587/transcom.2018ebp3247 - 发表时间:
2019-08 - 期刊:
- 影响因子:0.7
- 作者:
Xue Xiao;Xiao Song;Gan Hongping - 通讯作者:
Gan Hongping
An improved corrected score estimator for the proportional hazards model with time-dependent covariates measured with error at informative observation times
- DOI:
10.5705/ss.202015.0354 - 发表时间:
2017 - 期刊:
- 影响因子:1.4
- 作者:
Xiao Song - 通讯作者:
Xiao Song
Xiao Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Song', 18)}}的其他基金
Novel Statistical Methods for Modeling Population Dynamical Systems
人口动态系统建模的新统计方法
- 批准号:
1916411 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
相似海外基金
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Statistical infernce for survival data: nonparametric methods and deep learning
生存数据的统计推断:非参数方法和深度学习
- 批准号:
RGPIN-2019-05574 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
- 批准号:
RGPIN-2022-03264 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
A suite of new nonparametric methods for missing data and data from heterogeneous sources based on the theory of Frechet classes
基于 Frechet 类理论的一套新的用于缺失数据和异构源数据的非参数方法
- 批准号:
EP/W016117/1 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
- 批准号:
RGPIN-2016-05702 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual