Novel Statistical Methods for Modeling Population Dynamical Systems
人口动态系统建模的新统计方法
基本信息
- 批准号:1916411
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical models have been increasingly integrated in infectious disease studies in order to provide a quantitative understanding of virus infection and disease processes. Among the mathematical models, the ordinary differential equation (ODE) is a simple but powerful framework for modeling the dynamics of complex systems. Parameters in ODE models often have scientific meanings. Most of the previous research in this area focused on estimating ODE parameters from a single subject. This is not an efficient approach, because the data are often collected on multiple subjects. The objective of this project is to develop efficient methods for analyzing ODE systems by combining data from multiple subjects. The proposed research is expected to have broad impacts and application in biomedical studies, ecology, and other scientific areas.Models that can characterize the common features in the population will be considered while taking into account the variations among subjects. Efficient approaches for model selection will also be investigated. Both statistical theory and computational algorithm will be developed to tackle challenges in this area. Results from this research will provide new insight into the existing methods and inspire new lines of investigations in analyzing complex dynamic systems using ODE model. Extensive numerical studies will be conducted, which will help interested researchers better understand the proposed methods. The research will be integrated with various educational activities that will impact teaching and learning related to dynamic modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学模型已越来越多地纳入传染病研究,以便对病毒感染和疾病过程提供定量的了解。在数学模型中,常微分方程(ODE)是一个简单而强大的框架,用于建模复杂系统的动力学。ODE模型中的参数通常具有科学意义。在这一领域的大多数研究都集中在从单个对象估计ODE参数上。这不是一种有效的方法,因为数据通常是在多个主题上收集的。该项目的目标是通过结合来自多个主题的数据来开发分析ODE系统的有效方法。预计该研究将在生物医学、生态学和其他科学领域产生广泛影响和应用。在考虑到受试者之间的差异的同时,将考虑能够表征人口共同特征的模型。模型选择的有效方法也将被研究。将开发统计理论和计算算法来解决这一领域的挑战。本研究结果将为现有方法提供新的见解,并为利用ODE模型分析复杂动态系统提供新的研究思路。将进行广泛的数值研究,这将有助于感兴趣的研究人员更好地理解所提出的方法。该研究将与各种教育活动相结合,这些活动将影响与动态建模相关的教与学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian analysis for partly linear Cox model with measurement error and time-varying covariate effect.
- DOI:10.1002/sim.9531
- 发表时间:2022-10-15
- 期刊:
- 影响因子:2
- 作者:Pan, Anqi;Song, Xiao;Huang, Hanwen
- 通讯作者:Huang, Hanwen
Large scale analysis of generalization error in learning using margin based classification methods
使用基于边缘的分类方法对学习中的泛化误差进行大规模分析
- DOI:10.1088/1742-5468/abbed5
- 发表时间:2020-10-01
- 期刊:
- 影响因子:2.4
- 作者:Huang, Hanwen;Yang, Qinglong
- 通讯作者:Yang, Qinglong
Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard.
一般危害模型的半参数回归校准在生存分析中具有协变量测量误差;线性危害下的表现令人惊讶。
- DOI:10.1111/biom.13318
- 发表时间:2021-06
- 期刊:
- 影响因子:1.9
- 作者:Wang CY;Song X
- 通讯作者:Song X
Large dimensional analysis of general margin based classification methods
- DOI:10.1088/1742-5468/ac2edd
- 发表时间:2021-11-01
- 期刊:
- 影响因子:2.4
- 作者:Huang, Hanwen;Yang, Qinglong
- 通讯作者:Yang, Qinglong
Asymptotic risk and phase transition of $l_{1}$-penalized robust estimator
$l_{1}$-惩罚稳健估计器的渐近风险和相变
- DOI:10.1214/19-aos1923
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Huang, Hanwen
- 通讯作者:Huang, Hanwen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Song其他文献
The Study on Cloud Storage Data Management Method Based on Minimum Access Cost for Internet of Things
- DOI:
10.4028/www.scientific.net/amm.198-199.1657 - 发表时间:
2012-09 - 期刊:
- 影响因子:0
- 作者:
Xiao Song - 通讯作者:
Xiao Song
Experimental study on transition characteristics of thermo-solutocapillary convection under buoyancy
浮力作用下热溶毛细管对流转变特性实验研究
- DOI:
10.1016/j.expthermflusci.2019.04.017 - 发表时间:
2019-09 - 期刊:
- 影响因子:3.2
- 作者:
Liang Ruquan;Zhou Jinlin;Yang Shuo;Zhang Yuanyuan;Shi Jianhui;Xiao Song - 通讯作者:
Xiao Song
In vitro selection of macrocyclic peptides against human aminoacyl-tRNA synthetase complex interacting protein-1
体外筛选抗人氨酰-tRNA合成酶复合物相互作用蛋白-1的大环肽
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiao Song;Kibom Kim;Sunghoon Kim;加藤敬行;後藤佑樹;菅裕明 - 通讯作者:
菅裕明
Sparse Random Block-Banded Toeplitz Matrix for Compressive Sensing
用于压缩感知的稀疏随机分块托普利茨矩阵
- DOI:
10.1587/transcom.2018ebp3247 - 发表时间:
2019-08 - 期刊:
- 影响因子:0.7
- 作者:
Xue Xiao;Xiao Song;Gan Hongping - 通讯作者:
Gan Hongping
An improved corrected score estimator for the proportional hazards model with time-dependent covariates measured with error at informative observation times
- DOI:
10.5705/ss.202015.0354 - 发表时间:
2017 - 期刊:
- 影响因子:1.4
- 作者:
Xiao Song - 通讯作者:
Xiao Song
Xiao Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Song', 18)}}的其他基金
Novel nonparametric methods for prognosis studies with missing covariates
用于缺失协变量的预后研究的新型非参数方法
- 批准号:
1106816 - 财政年份:2011
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似海外基金
Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
- 批准号:
488421 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Operating Grants
Novel statistical genetics methods to unravel polygenic interactions in complex traits
揭示复杂性状中多基因相互作用的新统计遗传学方法
- 批准号:
10713965 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
- 批准号:
DP220102232 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Projects
Novel Statistical methods for extracting information from genetic data
从遗传数据中提取信息的新统计方法
- 批准号:
2744324 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Studentship
Novel Statistical Methods for Oral Microbiome Data Analysis
口腔微生物组数据分析的新统计方法
- 批准号:
10525318 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Resolving single-cell analysis challenges via data-driven decision frameworks and novel statistical methods
通过数据驱动的决策框架和新颖的统计方法解决单细胞分析挑战
- 批准号:
10707308 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
- 批准号:
10568744 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Novel Statistical Data Integration Methods for Multi-View Data
多视图数据的新颖统计数据集成方法
- 批准号:
548103-2020 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Novel Statistical Integration Methods for Multi-View Data
多视图数据的新颖统计集成方法
- 批准号:
RGPIN-2022-03034 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
- 批准号:
RGPIN-2018-04486 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual