Complex Porous Media Flows in Materials, Environmental and Biological Applications

材料、环境和生物应用中的复杂多孔介质流

基本信息

  • 批准号:
    1107848
  • 负责人:
  • 金额:
    $ 15.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-15 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

This project involves an investigation of complex flows in heterogenous, reactive and/or deformable porous materials. First, the solidification of a ternary alloy involves the formation of a porous mushy layer made up of dendritic crystals surrounded by fluid. In this mushy layer the motion of fluid is coupled to the growth or dissolution of the solid. Novel interactions between the dynamics of the fluid motion and the evolution of the solid material will be examined. Second, fluid flows in heterogeneous porous materials, such as geological subsurface systems, will be examined using homogenization techniques. Third, mathematical models of tear films for wearers of porous contact lenses will be explored. These models couple thin fluid film models of the tear films above and below the contact lens to fluid flow and evaporation through the contact lens.This research explores the motion of fluid through porous materials that are present in a broad range of natural, industrial, environmental and biomedical settings. Mathematical models are used to describe these complex systems. Computational tools are used to probe features of these models. Results of simulations and analyses are combined to provide new insights and broaden our understanding of physical and biological phenomena. Three main focus areas are motivated by (1) phenomena occurring in materials science observed during the casting of alloys, (2) the remediation of contaminated ground water systems, and (3) dry eye conditions and specifically how wearers of porous contact lenses may be affected. These broad topics are linked by the common presence of fluid motion through porous materials. This project will involve undergraduate and graduate students that will receive interdisciplinary training through research.
该项目涉及研究非均质、活性和/或可变形多孔材料中的复杂流动。首先,三元合金的凝固包括形成由树枝状晶体组成的多孔糊状层,周围环绕着流体。在这个糊状层中,流体的运动与固体的生长或溶解相耦合。我们将研究流体运动的动力学和固体材料的演化之间的新的相互作用。第二,将使用均化技术研究非均质多孔材料中的流体流动,例如地质地下系统。第三,探索多孔隐形眼镜佩戴者泪膜的数学模型。这些模型将隐形眼镜上方和下方的泪膜的薄膜模型与隐形眼镜中的流体流动和蒸发相结合。这项研究探索了流体在多孔材料中的运动,这些材料存在于广泛的自然、工业、环境和生物医学环境中。用数学模型来描述这些复杂的系统。计算工具被用来探索这些模型的特征。模拟和分析的结果结合在一起,提供了新的见解,拓宽了我们对物理和生物现象的理解。三个主要的重点领域是(1)在合金铸造过程中观察到的材料科学现象,(2)受污染的地下水系统的修复,以及(3)干眼状况,特别是多孔隐形眼镜的佩戴者可能受到的影响。这些广泛的话题由于流体在多孔材料中运动的普遍存在而联系在一起。该项目将涉及本科生和研究生,他们将通过研究接受跨学科培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Anderson其他文献

Parallel Batch-Dynamic Graph Connectivity
并行批量动态图连接
Educator–Reported Instructional Characteristics of Grade 1 Reading Interventions within a CBM Assessment System
教育工作者报告的 CBM 评估系统内一年级阅读干预的教学特征
STEM CELL FACTOR OVER–EXPRESSION IMPROVES CARDIAC FUNCTION AFTER MYOCARDIAL INFARCTION IN SWINE
  • DOI:
    10.1016/s0735-1097(13)62108-7
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Kiyotake Ishikawa;Elisa Yaniz–Galende;Jaime Aguero;Lisa Tilemann;Dongtak Jeong;Lifan Liang;Kenneth Fish;Kevin Costa;Eddie Eltoukhy;Daniel Anderson;Roger Hajjar
  • 通讯作者:
    Roger Hajjar
<strong>Molecular diagnostic findings of lysosomal diseases as a result of “Detect Lysosomal Storage Diseases”, a no-charge sponsored testing program</strong>
  • DOI:
    10.1016/j.ymgme.2019.11.184
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Leroy Hubert;Rebecca Truty;Daniel Beltran;Jodie Gillon;Gautam Mehta;Vanessa Rangel-Miller;Nick Silveira;Daniel Pivirotto;Daniel Anderson;Swaroop Aradhya;Britt Johnson
  • 通讯作者:
    Britt Johnson
Utility of Routine 45-Day Imaging After Watchman Procedure Before Stopping Anticoagulation
  • DOI:
    10.1016/j.carrev.2023.05.272
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tushar Sharma;Jason Payne;Samer Sayyed;Daniel Anderson;Thomas Porter;Andrew Goldsweig
  • 通讯作者:
    Andrew Goldsweig

Daniel Anderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Anderson', 18)}}的其他基金

SBIR Phase I: Transcatheter Tricuspid Valve Replacement using Physical Vapor Deposition Thin-Films
SBIR 第一阶段:使用物理气相沉积薄膜进行经导管三尖瓣置换术
  • 批准号:
    2031818
  • 财政年份:
    2020
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
The Influence of Television Content on Very Young Children's Play
电视内容对幼儿游戏的影响
  • 批准号:
    0921173
  • 财政年份:
    2009
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Fluid Flows in Reactive, Heterogeneous and Deformable Porous Media
反应性、非均质和可变形多孔介质中的流体流动
  • 批准号:
    0709095
  • 财政年份:
    2007
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
CSUMS: Development of an Ongoing Program of Undergraduate Computational Mathematics Research
CSUMS:正在进行的本科计算数学研究项目的开发
  • 批准号:
    0639300
  • 财政年份:
    2006
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Continuing Grant
EMSW21-VIGRE: The Iowa Mathematics Initiative
EMSW21-VIGRE:爱荷华州数学倡议
  • 批准号:
    0602242
  • 财政年份:
    2006
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Continuing Grant
IRADS Collaborative Research: Influences of Digital Media on Very Young Children
IRADS 合作研究:数字媒体对幼儿的影响
  • 批准号:
    0623888
  • 财政年份:
    2006
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
The Impact of Television on Very Young Children
电视对幼儿的影响
  • 批准号:
    0519197
  • 财政年份:
    2005
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Complex Flows In Porous Media
多孔介质中的复杂流动
  • 批准号:
    0306996
  • 财政年份:
    2003
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
The Impact of Television on Very Young Children
电视对幼儿的影响
  • 批准号:
    0111811
  • 财政年份:
    2001
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Continuing Grant
Children's Television Viewing Behavior
儿童电视观看行为
  • 批准号:
    8309403
  • 财政年份:
    1983
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Continuing Grant
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W03350X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Research Grant
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033550/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Research Grant
Development of an Efficient, Parameter Uniform and Robust Fluid Solver in Porous Media with Complex Geometries
复杂几何形状多孔介质中高效、参数均匀且鲁棒的流体求解器的开发
  • 批准号:
    2309557
  • 财政年份:
    2023
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Standard Grant
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033542/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Research Grant
Numerical modelling of integrated hydrogeological systems in complex porous and fractured media
复杂多孔和裂缝介质中综合水文地质系统的数值模拟
  • 批准号:
    RGPIN-2014-05873
  • 财政年份:
    2018
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Discovery Grants Program - Individual
Pore-scale analysis of complex displacement patterns in two-phase immiscible ow in porous media
多孔介质中两相不混相流复杂驱替模式的孔隙尺度分析
  • 批准号:
    2374599
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Studentship
Development of methods and theory of DNP enhanced NMR relaxometry for the study of complex fluids and porous media
开发用于研究复杂流体和多孔介质的 DNP 增强 NMR 弛豫测量方法和理论
  • 批准号:
    384109209
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Research Grants
Numerical modelling of integrated hydrogeological systems in complex porous and fractured media
复杂多孔和裂缝介质中综合水文地质系统的数值模拟
  • 批准号:
    RGPIN-2014-05873
  • 财政年份:
    2017
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical modelling of integrated hydrogeological systems in complex porous and fractured media
复杂多孔和裂缝介质中综合水文地质系统的数值模拟
  • 批准号:
    RGPIN-2014-05873
  • 财政年份:
    2016
  • 资助金额:
    $ 15.29万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了