Development of an Efficient, Parameter Uniform and Robust Fluid Solver in Porous Media with Complex Geometries

复杂几何形状多孔介质中高效、参数均匀且鲁棒的流体求解器的开发

基本信息

  • 批准号:
    2309557
  • 负责人:
  • 金额:
    $ 31.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The incompressible fluid model is widely used in various fields in engineering and science and their numerical solutions are of prominent importance in understanding complex, natural, engineered, and societal systems. This project aims to advance the state of the art by developing and demonstrating a low-cost, uniform, and parameter robust scheme for fluid flows with mass conservation via a pressure robust finite element method. The proposed research offers significant advancements in accuracy, efficiency, effectiveness, robustness, flexibility, and reliability of simulations for practical applications. This project will strengthen interdisciplinary collaborations among researchers who have different expertise in applied mathematics, computer science, computational fluid dynamics, computational physics, and petroleum engineering. Undergraduate and graduate students will receive interdisciplinary education through course development, research project design, and student training, with a special emphasis on supporting women and underrepresented minority students. The techniques will be implemented in an open-source software package and will be made available to the scientific community. Training of graduate students on the topics of the project is also expected.The proposed mathematical modeling and computational methods address key scientific challenges in the fluid simulation. Novel mathematical formulations are formed based on a divergence preserving numerical scheme and thus guarantee the fundamental mass conservation. The major components include: 1) Designing an applicable scheme that breaks the limitations of traditional solvers to achieve both pressure robustness and mass conservation. 2) Developing a uniform scheme with minimal computational cost, capable of handling varying physical parameters in the mixed regime. 3). Designing a flexible and affordable numerical scheme that can handle problems with complex geometries, providing high grid flexibility. 4). Investigating the robust and effective linear solvers for the resulting discrete linear systems, which is robust with respect to physical and discretization parameters. For all aspects of the project, rigorous numerical analysis will be carried out to prove and validate stability, convergence, and robustness. Corresponding numerical experiments will be performed for further validation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不可压缩流体模型广泛应用于工程和科学的各个领域,其数值解对于理解复杂的自然、工程和社会系统具有重要意义。该项目旨在通过开发和展示一种低成本,统一的,参数稳健的计划,通过压力稳健的有限元方法与质量守恒的流体流动,以推进最先进的技术。所提出的研究提供了显着的进步,在准确性,效率,有效性,鲁棒性,灵活性和可靠性的模拟实际应用。该项目将加强在应用数学、计算机科学、计算流体力学、计算物理和石油工程方面具有不同专业知识的研究人员之间的跨学科合作。本科生和研究生将通过课程开发,研究项目设计和学生培训接受跨学科教育,特别强调支持妇女和代表性不足的少数民族学生。 这些技术将在一个开放源码软件包中实施,并将提供给科学界。研究生的培训项目的主题也有望。提出的数学建模和计算方法解决关键的科学挑战,在流体模拟。新的数学公式的基础上形成的散度保持数值方案,从而保证基本的质量守恒。主要组成部分包括:1)设计一种适用的方案,打破传统求解器的局限性,同时实现压力鲁棒性和质量守恒。2)开发一个统一的计划,以最小的计算成本,能够处理不同的物理参数的混合制度。3)。 设计一种灵活且经济的数值方案,可以处理复杂几何形状的问题,提供高网格灵活性。4).研究所得到的离散线性系统的鲁棒和有效的线性求解器,这是相对于物理和离散参数的鲁棒性。对于项目的各个方面,将进行严格的数值分析,以证明和验证稳定性,收敛性和鲁棒性。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin Mu其他文献

The Analysis of the Evaporation Effect on Moisture Soil under Intermittent Operation of Ground-source Heat Pump
地源热泵间歇运行对湿土的蒸发效应分析
  • DOI:
    10.1016/j.egypro.2019.01.359
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Shang;Ming Dong;Lin Mu;Xiaohua Liu;Xiaowan Huang;Sufen Li
  • 通讯作者:
    Sufen Li
Impact of oil-sediment interaction on transport of underwater spilled oil in the Bohai Sea
油泥相互作用对渤海水下溢油输送的影响
  • DOI:
    10.1016/j.oceaneng.2022.110687
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yongquan Li;Ruichen Cao;Haibo Chen;Lin Mu;Xianqing Lv
  • 通讯作者:
    Xianqing Lv
A pressure‐robust weak Galerkin finite element method for Navier–Stokes equations
Space-Aware Spray and Transfer Routing Protocol for Opportunistic Networks
机会网络的空间感知喷雾和传输路由协议
Influence of positive gradient metallic cellular core on energy dissipation of sandwich panels under indentation
正梯度金属蜂窝芯对压痕下夹芯板能量耗散的影响
  • DOI:
    10.1007/s00419-016-1154-4
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Dengbao Xiao;Lin Mu;Guiping Zhao
  • 通讯作者:
    Guiping Zhao

Lin Mu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin Mu', 18)}}的其他基金

Weak Galerkin Modeling of Wave Scattering and Propagation in Dispersive Media
色散介质中波的散射和传播的弱伽辽金模型
  • 批准号:
    1418973
  • 财政年份:
    2014
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Statistical machine learning for efficient hidden parameter estimation and decision making
用于高效隐藏参数估计和决策的统计机器学习
  • 批准号:
    2601810
  • 财政年份:
    2021
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Studentship
HCD: Novel approaches of multi-parameter evidence synthesis and decision modelling for efficient evaluation of diagnostic health technologies
HCD:用于有效评估诊断健康技术的多参数证据合成和决策建模的新方法
  • 批准号:
    MR/T025166/1
  • 财政年份:
    2020
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Research Grant
Efficient source parameter estimation of binary neutron star events
双中子星事件的高效源参数估计
  • 批准号:
    19J13840
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Parameter Synthesis for Reliable, Performant and Efficient Wireless Network Protocols
可靠、高性能和高效无线网络协议的参数综合
  • 批准号:
    433044889
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Research Grants
Development of a Computationally Efficient Lumped Parameter Thermal Network Model for Accurate Thermal Analysis of Permanent Magnet Synchronous Machines
开发计算高效的集总参数热网络模型,用于永磁同步电机的精确热分析
  • 批准号:
    513819-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Engage Grants Program
Cost-parameter analyses for efficient network inventory management at Canadian Tire
加拿大轮胎公司高效网络库存管理的成本参数分析
  • 批准号:
    477670-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Engage Grants Program
Efficient constrained parameter inference for discrete, continuous, and multivariate models
针对离散、连续和多元模型的高效约束参数推断
  • 批准号:
    105806-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient constrained parameter inference for discrete, continuous, and multivariate models
针对离散、连续和多元模型的高效约束参数推断
  • 批准号:
    105806-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient constrained parameter inference for discrete, continuous, and multivariate models
针对离散、连续和多元模型的高效约束参数推断
  • 批准号:
    105806-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient constrained parameter inference for discrete, continuous, and multivariate models
针对离散、连续和多元模型的高效约束参数推断
  • 批准号:
    105806-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了