Floer Theory in examples of interest to Mirror Symmetry
镜像对称感兴趣的弗洛尔理论示例
基本信息
- 批准号:1108397
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1108397, Principal Investigator: Garrett AlstonMirror symmetry is an exciting branch of mathematics that is concerned with duality between the symplectic and algebraic geometry of Calabi-Yau manifolds. There are two complementary conjectures that purport to explain this duality-Kontsevich's Homological Mirror Symmetry conjecture (HMS) and the Strominger-Yau-Zaslow conjecture (SYZ). The principal investigator aims to study mirror symmetry in the context of these conjectures by studying explicit examples. First, an investigation of the manifold mirror to the quintic threefold will be undertaken. The PI will search for objects on the mirror manifold that exhibit behavior similar to a certain class of Lagrangian submanifolds on the quintic. This will provide a direct and concrete illustration of HMS. In conjunction with this work, a study of Floer cohomology of Lagrangians in K3 surfaces will be undertaken. This work will exploit explicit Lagrangian torus fibration constructions of Gross, Castano-Bernard, Matessi and others, which in turn are inspired by the SYZ conjecture.Algebraic geometry and symplectic geometry are deep and important fields whose origins go back hundreds of years. The questions and ideas arising from these fields have inspired many mathematicians and physicists and led to great scientific advances. Mirror symmetry promises to add to this legacy. Mirror symmetry has its roots in string theory and today is an important branch of physics. To mathematicians, mirror symmetry is an exciting and tantalizing subject because it hints at a link between algebraic and symplectic geometry. It is often these types of links-links between different subjects-that lead to breakthroughs. The goal of this project is to discover links between algebraic and sympletic geometry by applying newly developed theory and techniques to certain examples that are of central importance to mirror symmetry.
摘要奖:DMS 1108397,首席研究员:Garrett Alston 镜面对称是一个令人兴奋的数学分支,涉及卡拉比-丘流形的辛几何和代数几何之间的对偶性。有两个互补的猜想旨在解释这种对偶性:Kontsevich 的同调镜像对称猜想 (HMS) 和 Strominger-Yau-Zaslow 猜想 (SYZ)。主要研究者的目标是通过研究明确的例子来研究这些猜想背景下的镜像对称性。首先,将对五次三重流形镜进行研究。 PI 将在镜像流形上搜索表现出与五次方程上某一类拉格朗日子流形相似的行为的对象。这将为HMS提供一个直接、具体的说明。结合这项工作,我们将研究 K3 表面拉格朗日的 Floer 上同调。这项工作将利用 Gross、Castano-Bernard、Matessi 等人的显式拉格朗日环面纤维化构造,而这些构造又受到 SYZ 猜想的启发。代数几何和辛几何是深刻而重要的领域,其起源可以追溯到数百年前。这些领域产生的问题和想法启发了许多数学家和物理学家,并带来了巨大的科学进步。镜像对称有望为这一遗产增添色彩。镜像对称起源于弦理论,如今已成为物理学的一个重要分支。对于数学家来说,镜像对称是一个令人兴奋和诱人的主题,因为它暗示了代数几何和辛几何之间的联系。通常正是这些类型的联系——不同主题之间的联系——带来了突破。该项目的目标是通过将新开发的理论和技术应用于对镜像对称至关重要的某些示例,发现代数几何和辛几何之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Garrett Alston其他文献
Immersed Lagrangian Floer cohomology via pearly trajectories
通过珍珠轨迹沉浸拉格朗日弗洛尔上同调
- DOI:
10.1016/j.geomphys.2021.104335 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston;Erkao Bao - 通讯作者:
Erkao Bao
Floer cohomology of immersed Lagrangian spheres in smoothings of $A_N$ surfaces
$A_N$ 表面平滑中浸没拉格朗日球的 Floer 上同调
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston - 通讯作者:
Garrett Alston
Floer cohomology of torus fibers and real lagrangians in Fano toric manifolds
Fano 复曲面流形中环面纤维和实拉格朗日的 Floer 上同调
- DOI:
10.1093/imrn/rnr125 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston;Lino Amorim - 通讯作者:
Lino Amorim
Floer cohomology of real Lagrangians in the Fermat quintic threefold
费马五次三重中实拉格朗日的 Floer 上同调
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston - 通讯作者:
Garrett Alston
Lagrangian Floer homology of the Clifford torus and real projective space in odd dimensions
Clifford 环面与奇维实射影空间的拉格朗日弗洛尔同调
- DOI:
10.4310/jsg.2011.v9.n1.a5 - 发表时间:
2009 - 期刊:
- 影响因子:0.7
- 作者:
Garrett Alston - 通讯作者:
Garrett Alston
Garrett Alston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Garrett Alston', 18)}}的其他基金
Mirror Symmetry in the Midwest Conference to be held at Kansas State University; Winter, 2011
中西部镜像对称会议将在堪萨斯州立大学举行;
- 批准号:
1137506 - 财政年份:2011
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
- 批准号:
2318926 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
Applied Nonautonomous Dynamical Systems: Theory, Methods and Examples
应用非自主动力系统:理论、方法和实例
- 批准号:
EP/T018178/1 - 财政年份:2020
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
Model theory of valued fields as examples of theories with NIP
有价值领域的模型理论作为 NIP 理论的例子
- 批准号:
238875-2011 - 财政年份:2015
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual
Model theory of valued fields as examples of theories with NIP
有价值领域的模型理论作为 NIP 理论的例子
- 批准号:
238875-2011 - 财政年份:2014
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual
Model theory of valued fields as examples of theories with NIP
有价值领域的模型理论作为 NIP 理论的例子
- 批准号:
238875-2011 - 财政年份:2013
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual
Model theory of valued fields as examples of theories with NIP
有价值领域的模型理论作为 NIP 理论的例子
- 批准号:
238875-2011 - 财政年份:2012
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual
Model theory of valued fields as examples of theories with NIP
有价值领域的模型理论作为 NIP 理论的例子
- 批准号:
238875-2011 - 财政年份:2011
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual
Geometric mechanics examples simulation and theory
几何力学实例模拟与理论
- 批准号:
105716-2006 - 财政年份:2010
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual
Model theory of valued fields as examples of NIP theories
有价值领域的模型理论作为 NIP 理论的例子
- 批准号:
238875-2010 - 财政年份:2010
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual
Geometric mechanics examples simulation and theory
几何力学实例模拟与理论
- 批准号:
105716-2006 - 财政年份:2009
- 资助金额:
$ 5.27万 - 项目类别:
Discovery Grants Program - Individual