Mirror Symmetry in the Midwest Conference to be held at Kansas State University; Winter, 2011
中西部镜像对称会议将在堪萨斯州立大学举行;
基本信息
- 批准号:1137506
- 负责人:
- 金额:$ 2.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A conference entitled "Mirror Symmetry in the Midwest" will be held November 3-6 at Kansas State University. Mirror symmetry is an exciting and rapidly developing field that is concerned with duality between the complex and symplectic geometry of certain Calabi-Yau manifolds. The search for the underlying principles at work in mirror symmetry has driven a great deal of the research in symplectic and complex/algebraic geometry over the past two decades. Many of the ideas and techniques used to study mirror symmetry have become interesting areas of research in their own right. Examples include Gromov-Witten theory, Floer theory, Fukaya categories, derived categories, Lagrangian torus fibrations, special Lagrangian geometry, Donaldson-Thomas invariants, and tropical geometry. The breadth of ideas involved and number of approaches to the subject make it fertile ground for collaboration. The conference will exploit this by bringing together researchers studying a wide variety of the geometric and algebraic aspects of mirror symmetry.The goal of the conference is to advance mirror symmetry by opening and strengthening lines of communications between researchers, finding areas for collaboration, and educating participants. The conference will have several important features in order to achieve these goals. To further the educational aims, the conference will feature a mini-course designed to educate participants on a particular topic at a high but non-expert level. The mini-course will be useful to graduate students as well as to more senior participants, both as an educational experience and as an opportunity to find areas for collaboration. There will be a poster session that will allow graduate students to show off their work. This will provide an opportunity for young researchers to communicate with more senior researchers and will provide an excellent opportunity for the transfer of knowledge. The conference will feature participants who are experts in both geometric and algebraic aspects of mirror symmetry and thus will provide an opportunity to find ways to integrate diverse ideas. Finally, mirror symmetry has its roots in string theory and high energy physics and today is an important branch of theoretical physics. The conference will increase communication between mathematicians and physicists by inviting both types of people to attend.More information can be found on the conference website:http://www.math.ksu.edu/~galston/conference/
一个题为“中西部的镜像对称”的会议将于11月3日至6日在堪萨斯州立大学举行。镜像对称是一个令人兴奋和迅速发展的领域,它涉及某些卡-丘流形的复几何和辛几何之间的对偶性。在过去的二十年里,对镜像对称中工作的基本原理的探索推动了辛几何和复/代数几何的大量研究。许多用于研究镜像对称的想法和技术已经成为有趣的研究领域。例子包括Gromov-Witten理论、Floer理论、福谷范畴、导出范畴、拉格朗日环面纤维化、特殊拉格朗日几何、Donaldson-Thomas不变量和热带几何。所涉及的思想的广度和处理该主题的方法的数量使其成为合作的肥沃土壤。本次会议将利用这一点,将研究镜像对称的各种几何和代数方面的研究人员聚集在一起。会议的目标是通过开放和加强研究人员之间的沟通渠道,寻找合作领域,并教育参与者来促进镜像对称。为了实现这些目标,会议将有几个重要特点。为了促进教育目标,会议将设有一个小型课程,旨在教育参与者在一个特定的主题在一个高,但非专家水平。小型课程将对研究生和更高级别的参与者有用,既可作为一种教育经验,也可作为寻找合作领域的机会。将有一个海报会议,将允许研究生炫耀他们的工作。这将为年轻的研究人员提供一个与更资深的研究人员交流的机会,并将为知识转让提供一个极好的机会。会议的特点是与会者谁是镜像对称的几何和代数方面的专家,从而将提供一个机会,找到方法来整合不同的想法。最后,镜像对称起源于弦理论和高能物理,今天是理论物理的一个重要分支。这次会议将通过邀请数学家和物理学家参加来增加他们之间的交流。更多信息可以在会议网站上找到:http://www.math.ksu.edu/~galston/conference/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Garrett Alston其他文献
Immersed Lagrangian Floer cohomology via pearly trajectories
通过珍珠轨迹沉浸拉格朗日弗洛尔上同调
- DOI:
10.1016/j.geomphys.2021.104335 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston;Erkao Bao - 通讯作者:
Erkao Bao
Floer cohomology of immersed Lagrangian spheres in smoothings of $A_N$ surfaces
$A_N$ 表面平滑中浸没拉格朗日球的 Floer 上同调
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston - 通讯作者:
Garrett Alston
Floer cohomology of torus fibers and real lagrangians in Fano toric manifolds
Fano 复曲面流形中环面纤维和实拉格朗日的 Floer 上同调
- DOI:
10.1093/imrn/rnr125 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston;Lino Amorim - 通讯作者:
Lino Amorim
Floer cohomology of real Lagrangians in the Fermat quintic threefold
费马五次三重中实拉格朗日的 Floer 上同调
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Garrett Alston - 通讯作者:
Garrett Alston
Lagrangian Floer homology of the Clifford torus and real projective space in odd dimensions
Clifford 环面与奇维实射影空间的拉格朗日弗洛尔同调
- DOI:
10.4310/jsg.2011.v9.n1.a5 - 发表时间:
2009 - 期刊:
- 影响因子:0.7
- 作者:
Garrett Alston - 通讯作者:
Garrett Alston
Garrett Alston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Garrett Alston', 18)}}的其他基金
Floer Theory in examples of interest to Mirror Symmetry
镜像对称感兴趣的弗洛尔理论示例
- 批准号:
1108397 - 财政年份:2011
- 资助金额:
$ 2.31万 - 项目类别:
Standard Grant
相似国自然基金
基于级联环形微腔PT-Symmetry效应的芯片级全光开关
- 批准号:61675185
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
- 批准号:
MR/Y034007/1 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Fellowship
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
- 批准号:
2350239 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
- 批准号:
2345644 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Continuing Grant
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Research Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344490 - 财政年份:2024
- 资助金额:
$ 2.31万 - 项目类别:
Standard Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 2.31万 - 项目类别:
Standard Grant