ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms

ATD:理解神经网络中的对抗性例子:理论和算法

基本信息

项目摘要

While neural network-based models have shown exceptional power and versatility, their robustness against adversarial examples, which are inputs deliberately designed to mislead the model, has become a major area of concern. Adversarial training is currently the most widely used method to improve the robustness of neural networks against adversarial perturbations, but this approach has been found to have limitations, such as overfitting. In addition, the understanding of both attacks and adversarial training is still limited. In light of these challenges, this research aims to develop a theoretical analysis that sheds light on the robustness of neural network-based methods and the properties of adversarial training. This understanding is essential to the design of effective attack strategies and defense mechanisms for various machine learning models. This research has the potential to have a significant impact on a wide range of fields, such as cybersecurity, computer vision, natural language processing, healthcare, and financial services, where machine learning models play a crucial role. The proposed project aims to contribute to the development of robust neural network-based models and algorithms through novel theoretical studies. Unlike existing works that primarily focus on the generalization error of the neural network algorithms, this project will focus on the robustness and stability. The research will leverage a range of mathematical and computational techniques, including statistical learning theory, random matrix theory, reproducing kernel Hilbert space, and optimization. The investigation of robustness will lead to the development of novel algorithms that are less vulnerable to adversarial attacks and can be implemented with greater security and stabilityThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管基于神经网络的模型表现出了非凡的能力和通用性,但它们对敌意例子的稳健性已经成为一个主要的令人担忧的领域。对抗性训练是目前使用最广泛的方法来提高神经网络对对抗性扰动的稳健性,但这种方法被发现有一定的局限性,如过拟合。此外,对进攻和对抗性训练的理解仍然有限。鉴于这些挑战,本研究旨在开发一种理论分析,以揭示基于神经网络的方法的稳健性和对抗性训练的特性。这对于为各种机器学习模型设计有效的攻击策略和防御机制是至关重要的。这项研究有可能对网络安全、计算机视觉、自然语言处理、医疗保健和金融服务等广泛领域产生重大影响,在这些领域,机器学习模型发挥着关键作用。拟议的项目旨在通过新的理论研究来促进基于神经网络的健壮模型和算法的发展。与现有工作主要关注神经网络算法的泛化误差不同,本课题将重点研究神经网络算法的健壮性和稳定性。这项研究将利用一系列数学和计算技术,包括统计学习理论、随机矩阵理论、再生核希尔伯特空间和优化。对健壮性的调查将导致开发新的算法,这些算法不太容易受到对手攻击,并且可以以更高的安全性和稳定性实施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teng Zhang其他文献

Autonomous Self-Drilling Seed Carriers for Aerial Seeding with Superior Success Rates
用于空中播种的自主自钻式种子载体,具有极高的成功率
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danli Luo;Aditi Maheshwari;Andreea Danielescu;Jiaji Li;Yue Yang;Ye Tao;Lingyun;Sun;Guanyun Wang;Shu;Teng Zhang;Lining Yao
  • 通讯作者:
    Lining Yao
Polyanion-type electrode materials for advanced sodium-ion batteries
先进钠离子电池用聚阴离子型电极材料
  • DOI:
    10.1016/j.mtnano.2020.100072
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    Lina Zhao;Teng Zhang;Hailei Zhao;Yanglong Hou
  • 通讯作者:
    Yanglong Hou
increased regulatory T cells in Peripheral Blood of acute Myeloid leukemia Patients rely on Tumor necrosis Factor (TnF)-α–TNF receptor-2 Pathway
急性髓性白血病外周血中调节性T细胞增加患者依赖肿瘤坏死因子(TnF)-α-TNF受体-2通路
  • DOI:
    10.3389/fmmu.2018.01274
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Min Wang;Chen Zhang;Tian Tian;Teng Zhang;Ruiqing Wang;Fengjiao Han;Chaoqin Zhong;Mingqiang Hua;Daoxin Ma
  • 通讯作者:
    Daoxin Ma
Efficient CO2 electrolysis with scandium doped titanate cathode
使用掺钪钛酸盐阴极进行高效 CO2 电解
  • DOI:
    10.1016/j.ijhydene.2017.01.182
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Jinhai Lu;Shisong Li;Shanwen Tao;Teng Zhang;Kui Xie
  • 通讯作者:
    Kui Xie
Active, durable bismuth oxide-manganite composite oxygen electrodes: Interface formation induced by cathodic polarization
活性、耐用的氧化铋-亚锰酸盐复合氧电极:阴极极化引起的界面形成
  • DOI:
    10.1016/j.jpowsour.2018.07.012
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Minle Chen;Yi Cheng;Shuai He;Na Ai;Jean Pierre Veder;William D A Rickard;Martin Saunders;Kongfa Chen;Teng Zhang;San Ping Jiang
  • 通讯作者:
    San Ping Jiang

Teng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teng Zhang', 18)}}的其他基金

Collaborative Research: Tailoring Energy Landscapes to Harness the Multistability for Reconfigurable 3D Buckled Structures
合作研究:定制能源景观以利用可重构 3D 屈曲结构的多稳定性
  • 批准号:
    2020476
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CAREER: Mechanics of Interfaces in Soft Materials
职业:软材料界面力学
  • 批准号:
    1847149
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding, improving, and extending Generative Adversarial Networks (GANs)
理解、改进和扩展生成对抗网络 (GAN)
  • 批准号:
    546493-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Understanding the impact of adversarial inputs on autonomous driving systems and developing countermeasure technologies
了解对抗性输入对自动驾驶系统的影响并开发对策技术
  • 批准号:
    22H00519
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding, improving, and extending Generative Adversarial Networks (GANs)
理解、改进和扩展生成对抗网络 (GAN)
  • 批准号:
    546493-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
  • 批准号:
    2029858
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Understanding, improving, and extending Generative Adversarial Networks (GANs)
理解、改进和扩展生成对抗网络 (GAN)
  • 批准号:
    546493-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Adversarial Data Augmentation for Multimodal Language Understanding
用于多模态语言理解的对抗性数据增强
  • 批准号:
    20H04269
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
  • 批准号:
    2029875
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Mitigating Adversarial Manipulation of Content Curation Algorithms
SaTC:核心:小型:协作:理解和减轻内容管理算法的对抗性操纵
  • 批准号:
    1931005
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Mitigating Adversarial Manipulation of Content Curation Algorithms
SaTC:核心:小型:协作:理解和减轻内容管理算法的对抗性操纵
  • 批准号:
    1813697
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Mitigating Adversarial Manipulation of Content Curation Algorithms
SaTC:核心:小型:协作:理解和减轻内容管理算法的对抗性操纵
  • 批准号:
    1814816
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了