Collaborative Research. Nonlinear Schroedinger Models in Fluid Dynamics: Rogue Waves and Vortex Filaments

合作研究。

基本信息

项目摘要

This project combines the complementary expertise of the two principal investigators (PIs) to study two areas of fluid dynamics modeled by the integrable focusing Nonlinear Schroedinger (NLS) equation and higher order generalizations: rogue wave generation in deep water, and vortex filament dynamics, for which accurate numerical methods will be used to guide theoretical work, and to study more physically relevant models. Floquet theory, dynamical systems methods, perturbation theory, numerical spectral diagnostics, and multi-symplectic and conformal integrators, will be used to address the questions of generation and persistence of rogue waves. Physical lab-tank experiments will test and validate the analysis of the correlation between proximity to instabilities and homoclinic data, and the likelihood of rogue waves; whether nonlinear damping eliminates rogue waves through downshifting. Stability and dynamics of vortex filaments will be investigated theoretically and numerically.Rogue waves are extremely rare and destructive waves in the ocean that are believed to arise spontaneously (in contrast with tsunamis). They are transient large amplitude waves whose heights are significantly larger than the background sea, 25 meters and up to 35 meters. The research on rogue waves is aimed at improving predictors of these extreme wave events. Vortex filaments are important models of localized vorticity structures that often emerge as distinctive features in various physical phenomena; for example, vortex filaments can be used to describe the flow of superfluids and of turbulent fluids. Filamentary structures in geophysical systems (e.g. tornados) and in magneto-hydrodynamics (e.g. slender plasma-filled tubes in the solar corona) can also be modeled by vortex filaments. The analytical and numerical tools developed for both rogue wave and vortex filament models will be of value for other applied fluid mechanical problems. This research will involve one undergraduate and one graduate student at each of the institutions. The PIs will continue mentoring students from underrepresented groups and broadening their training by bringing students to meetings that connect mathematicians and experimentalists.
该项目结合了两位主要研究员(PI)的互补专业知识,研究由可积聚焦非线性薛定谔(NLS)方程和高阶概括建模的流体动力学的两个领域:深水中的流氓波生成和涡丝动力学,其中精确的数值方法将用于指导理论工作,并研究更多物理相关模型。 Floquet 理论、动力系统方法、微扰理论、数值谱诊断以及多辛和共形积分器将用于解决异常波的产生和持续问题。物理实验室-坦克实验将测试和验证不稳定性接近度和同宿数据之间的相关性分析,以及异常波的可能性;非线性阻尼是否通过降档消除异常波。 涡丝的稳定性和动力学将从理论上和数值上进行研究。异常波是海洋中极为罕见且具有破坏性的波浪,人们认为它是自发产生的(与海啸相反)。它们是瞬态大幅度波浪,其高度明显大于背景海,最高可达 25 米,最高可达 35 米。对异常波浪的研究旨在改进这些极端波浪事件的预测。涡旋是局部涡量结构的重要模型,通常在各种物理现象中作为独特的特征出现;例如,涡流可用于描述“超流体”和“湍流”流体的流动。地球物理系统(例如龙卷风)和磁流体动力学(例如日冕中细长的等离子体填充管)中的丝状结构也可以通过涡旋filaments来建模。为流氓波和涡丝模型开发的分析和数值工具对于其他应用流体力学问题将具有价值。 这项研究将涉及每个机构的一名本科生和一名研究生。 PI 将继续指导来自代表性不足群体的学生,并通过带学生参加连接数学家和实验学家的会议来扩大他们的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constance Schober其他文献

Constance Schober的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constance Schober', 18)}}的其他基金

Collaborative Proposal: SouthEastern Atlantic Mathematical Sciences Workshop
合作提案:东南大西洋数学科学研讨会
  • 批准号:
    0739387
  • 财政年份:
    2008
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Dynamical systems Methods and Geometric Integrators for Nonlinear Wave Equations
非线性波动方程的动力系统方法和几何积分器
  • 批准号:
    0608693
  • 财政年份:
    2006
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Continuing Grant
Dynamical Systems Methods and Geometric Integrators for Nonlinear Wave Equations
非线性波动方程的动力系统方法和几何积分器
  • 批准号:
    0438154
  • 财政年份:
    2004
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Dynamical Systems Methods and Geometric Integrators for Nonlinear Wave Equations
非线性波动方程的动力系统方法和几何积分器
  • 批准号:
    0204714
  • 财政年份:
    2002
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Chaotic Dynamics in Near-Integrable Systems and the Role of Symmetries
近可积系统中的混沌动力学和对称性的作用
  • 批准号:
    9803567
  • 财政年份:
    1998
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
  • 批准号:
    2318951
  • 财政年份:
    2024
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
  • 批准号:
    2318952
  • 财政年份:
    2024
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325172
  • 财政年份:
    2023
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325171
  • 财政年份:
    2023
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
  • 批准号:
    2348826
  • 财政年份:
    2023
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
  • 批准号:
    2308639
  • 财政年份:
    2023
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
  • 批准号:
    2308640
  • 财政年份:
    2023
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325170
  • 财政年份:
    2023
  • 资助金额:
    $ 21.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了