eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
基本信息
- 批准号:2325170
- 负责人:
- 金额:$ 15.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our world is dominated in many respects by communities of single celled organisms, e.g., bacteria, archaea and non-filamentous fungi. Such communities are key players in all geochemical cycles; they are present in all multicellular organisms, including humans, where in addition to possibly harmful effects, they also have essential beneficial roles. They are ubiquitous in engineered systems as well where, again, they can be beneficial (e.g., waste water treatment) or harmful (e.g., drinking water distribution). In large part, microbial communities interactions with their environments are metabolic through chemicals they take in, products they make with these inputs, and byproducts they excrete, so understanding these metabolic capabilities is essential for understanding how microbes effect their surroundings. Advances in genetic sequencing are making it easier and easier to determine microbial "machinery" (enzymes); researchers are becoming increasingly adept in predicting how this "machinery" combines into "assemblage lines" (metabolic pathways). Armed with this knowledge, the next step is to understand how these "assembly lines" fit into their environment into a sort of large scale "distribution system" that determines overall microbial community function. At large scale, this becomes a challenging computational problem, and current methods are not adequate. This project aims to accelerate these computations by introducing machine learning tools into key bottlenecks in the algorithms. The project is a collaboration between Temple University, Montana State University, and the University of California, San Diego and offers valuable educational, training, and outreach opportunities. Activity funded by this proposal would center on development of computational methods, based on machine learning and artificial intelligence assisted optimization, that are sufficiently efficient so as to make it possible to embed complex cell-scaled models of microbial behavior (metabolic and gene expression models, so-called ME modes) into environmental scale PDE-based models of microbial community activity. In support of this effort, ME models of several specific organisms (S. aureus, S. epidermidis, B. subtilis) will be adapted for use in specific environmental-scale models (basic biofilm communities and built-environment subaerial communities). In complement, environmental-scale continuum-mechanics-based (partial differential equation) models for these systems will be constructed and adapted for use with the new computational methods. AI will also be applied at this macroscale to attempt to identify key metabolic processes at the large scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们的世界在许多方面由单细胞生物群落主导,例如细菌、古生菌和非丝状真菌。这些群落是所有地球化学循环的关键参与者;它们存在于包括人类在内的所有多细胞生物中,除了可能产生有害影响外,它们还具有必不可少的有益作用。它们在工程系统中也无处不在,它们可以是有益的(例如,废水处理)或有害的(例如,饮用水分配)。在很大程度上,微生物群落与环境的相互作用是通过它们摄入的化学物质、它们用这些输入产生的产物以及它们排泄的副产品进行代谢的,因此,了解这些代谢能力对于理解微生物如何影响它们的环境至关重要。基因测序技术的进步使测定微生物“机制”(酶)变得越来越容易;研究人员越来越善于预测这种“机器”如何组合成“装配线”(代谢途径)。有了这些知识,下一步是了解这些“装配线”如何适应环境,形成一种大规模的“分配系统”,决定微生物群落的整体功能。在大范围内,这成为一个具有挑战性的计算问题,目前的方法是不够的。该项目旨在通过将机器学习工具引入算法中的关键瓶颈来加速这些计算。该项目是天普大学、蒙大拿州立大学和加州大学圣地亚哥分校的合作项目,提供有价值的教育、培训和推广机会。由该提案资助的活动将集中于基于机器学习和人工智能辅助优化的计算方法的开发,这些方法足够有效,从而可以将复杂的细胞尺度微生物行为模型(代谢和基因表达模型,所谓的ME模式)嵌入到基于环境尺度pde的微生物群落活动模型中。为了支持这一努力,几种特定生物(金黄色葡萄球菌、表皮葡萄球菌、枯草芽孢杆菌)的ME模型将适用于特定的环境尺度模型(基本生物膜群落和建成环境的地面群落)。作为补充,这些系统的基于环境尺度的连续力学(偏微分方程)模型将被构建并适应新的计算方法。人工智能也将在这个宏观尺度上应用,试图在大尺度上识别关键的代谢过程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Klapper其他文献
Challenges in microbial ecology: building predictive understanding of community function and dynamics
微生物生态学中的挑战:建立对群落功能和动态的预测性理解
- DOI:
10.1038/ismej.2016.45 - 发表时间:
2016-03-29 - 期刊:
- 影响因子:10.000
- 作者:
Stefanie Widder;Rosalind J Allen;Thomas Pfeiffer;Thomas P Curtis;Carsten Wiuf;William T Sloan;Otto X Cordero;Sam P Brown;Babak Momeni;Wenying Shou;Helen Kettle;Harry J Flint;Andreas F Haas;Béatrice Laroche;Jan-Ulrich Kreft;Paul B Rainey;Shiri Freilich;Stefan Schuster;Kim Milferstedt;Jan R van der Meer;Tobias Groβkopf;Jef Huisman;Andrew Free;Cristian Picioreanu;Christopher Quince;Isaac Klapper;Simon Labarthe;Barth F Smets;Harris Wang;Orkun S Soyer - 通讯作者:
Orkun S Soyer
Analysis of Adaptive Response to Dosing Protocols for Biofilm Control
生物膜控制给药方案的适应性响应分析
- DOI:
10.1137/080739070 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Barbara Szomolay;Isaac Klapper;M. Dindoš - 通讯作者:
M. Dindoš
Isaac Klapper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Klapper', 18)}}的其他基金
Life on the Rocks: Chronic Subaerial Microbial Biofilms on Stone Monuments
岩石上的生命:石碑上的慢性地下微生物生物膜
- 批准号:
1951532 - 财政年份:2020
- 资助金额:
$ 15.83万 - 项目类别:
Continuing Grant
Collaborative Research: Connecting Omics to Physical and Chemical Environment in Community Microbial Ecology
合作研究:将组学与群落微生物生态学中的物理和化学环境联系起来
- 批准号:
1517100 - 财政年份:2015
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Fluid Dynamics: From Theory to Experiment
流体动力学:从理论到实验
- 批准号:
0947173 - 财政年份:2010
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Microbial Communities: Theory and Practice
微生物群落:理论与实践
- 批准号:
1022836 - 财政年份:2010
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
CMG Research: Impact of Mineral Precipitating Biofilms on the Physical and Chemical Characteristics of Porous Media
CMG 研究:矿物沉淀生物膜对多孔介质物理和化学特性的影响
- 批准号:
0934696 - 财政年份:2009
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Microbial Ecology and Diversity: Genomics and Metagenomics in a Yellowstone Hotspring
微生物生态学和多样性:黄石温泉的基因组学和宏基因组学
- 批准号:
0826975 - 财政年份:2008
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Applications of Filament Dynamics to Physics, Biology, and Engineering
细丝动力学在物理学、生物学和工程中的应用
- 批准号:
9704486 - 财政年份:1997
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206296 - 财政年份:1992
- 资助金额:
$ 15.83万 - 项目类别:
Fellowship Award
相似海外基金
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Stochasticity in ovarian aging and biotechnologies for menopause delay
eMB:合作研究:卵巢衰老的随机性和延迟绝经的生物技术
- 批准号:
2325259 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325171 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
- 批准号:
2325184 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Stochasticity in ovarian aging and biotechnologies for menopause delay
eMB:合作研究:卵巢衰老的随机性和延迟绝经的生物技术
- 批准号:
2325258 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325078 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325076 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Advancing Inference of Phylogenetic Trees and Networks under Multispecies Coalescent with Hybridization and Gene Flow
eMB:合作研究:通过杂交和基因流推进多物种合并下的系统发育树和网络的推理
- 批准号:
2325776 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325077 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant