RUI: Multidimensional Conservation Laws and Related Applications
RUI:多维守恒定律及相关应用
基本信息
- 批准号:1109202
- 负责人:
- 金额:$ 16.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project consists of two parts. The first project aims at understanding the solution structures of mixed (hyperbolic-elliptic) type systems of partial differential equations arising from multidimensional conservation laws. A distinctive feature of multidimensional conservation laws written in self-similar coordinates is that they change their type: they are hyperbolic far from the origin, and mixed near the origin. The latter confronts us with important problems in nonlinear equations of mixed types and free boundaries. In particular, when the waves are weak enough that the nonlinear acoustic waves dominate the nonlinear entropy and vorticity waves, shock polar analysis fails to explain the nature of shock reflection. This is the so called von Neumann paradox. It is one of the main motivations of this project to address the failures of asymptotic and computational analysis to resolve certain paradoxes concerning the existence and the stability of solutions of multidimensional problems. Understanding the mathematical structure of multidimensional conservation laws is a crucial step in improving computational methods and in resolving such paradoxes. The project is directed at investigating these mixed type problems to gain new physical insights, to develop novel analytical tools, and to find the correct mathematical framework in which to pose the nonlinear conservation laws and to develop efficient numerical methods. The second project will investigate the feasibility of various wildfire spread models with sparse data, and development of efficient algorithms to solve the model problems. This project will be conducted in communication with the USDA Forest Fire Lab in Riverside, CA. The wildfire spread models inherit scale separation of the local atmospheric dynamics (one kilometer and larger) and the local combustion dynamics (one meter and smaller). Also, available data are irregular and sometimes inaccurate. Existing extensive models, require complete data, are computationally intensive, and thus may not provide immediate results, which are crucial for effective fire-fighting plans. The project will develop efficient algorithms for simplified models, which can be incorporated with sparse data, so that the fire-fighting could be planned immediately and as accurately as possible.Multidimensional conservation laws are mathematical models for fundamental processes in physics and engineering, such as high-speed flows and supersonic jets. A deeper understanding of multidimensional conservation laws will provide efficient and effective methods for applications, such as compressible gas dynamics, thermodynamics, multi-phase flow and porous medium flow. Our wildfire modeling will contribute to effective fire-fighting planning and thus will have direct benefits for society. This project will take place at a Hispanic-serving institution, and involve undergraduate/master students in simulations of the model problems, thus preparing the students for further work in the design, implementation, and development of algorithms. This project will provide students with training to prepare them for their academic careers (as Ph.D. students), or their future jobs in the high tech industry in the greater Los Angeles area.
该项目由两部分组成。第一个项目旨在理解由多维守恒定律产生的混合(双曲椭圆)型偏微分方程组的解结构。用自相似坐标编写的多维守恒定律的一个显着特征是它们改变了类型:远离原点的地方是双曲线的,靠近原点的地方是混合的。后者使我们面临混合类型和自由边界非线性方程中的重要问题。特别是,当波足够弱以至于非线性声波在非线性熵波和涡度波中占主导地位时,激波极性分析无法解释激波反射的本质。这就是所谓的冯诺依曼悖论。 该项目的主要动机之一是解决渐近分析和计算分析的失败问题,以解决有关多维问题解的存在性和稳定性的某些悖论。理解多维守恒定律的数学结构是改进计算方法和解决此类悖论的关键一步。该项目旨在研究这些混合类型问题,以获得新的物理见解,开发新颖的分析工具,并找到正确的数学框架来提出非线性守恒定律并开发有效的数值方法。第二个项目将研究稀疏数据的各种野火蔓延模型的可行性,并开发有效的算法来解决模型问题。该项目将与位于加利福尼亚州里弗赛德的美国农业部森林火灾实验室进行沟通。 野火蔓延模型继承了局部大气动力学(一公里及以上)和局部燃烧动力学(一米及以下)的尺度分离。此外,可用数据不规则,有时甚至不准确。现有的广泛模型需要完整的数据,计算量大,因此可能无法立即提供结果,而这对于有效的消防计划至关重要。 该项目将为简化模型开发有效的算法,这些算法可以与稀疏数据结合起来,以便能够立即、尽可能准确地制定消防计划。多维守恒定律是物理和工程中基本过程的数学模型,例如高速流动和超音速喷射。对多维守恒定律的深入理解将为可压缩气体动力学、热力学、多相流和多孔介质流动等应用提供高效有效的方法。我们的野火模型将有助于有效的消防规划,从而为社会带来直接利益。该项目将在西班牙裔服务机构进行,让本科生/硕士生参与模型问题的模拟,从而为学生在算法的设计、实现和开发方面的进一步工作做好准备。该项目将为学生提供培训,为他们的学术生涯(作为博士生)或未来在大洛杉矶地区高科技行业的工作做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eun Heui Kim其他文献
Thermal-image-based wildfire spread simulation using a linearized model of an advection–diffusion–reaction equation
使用平流扩散反应方程的线性模型进行基于热图像的野火蔓延模拟
- DOI:
10.1177/0037549712440519 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Eun Heui Kim;M. Tran;Karen Yang - 通讯作者:
Karen Yang
Convergence of parallel multisplitting methods using ILU factorizations
- DOI:
10.1007/bf02935747 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:2.700
- 作者:
Jae Heon Yun;Seyoung Oh;Eun Heui Kim - 通讯作者:
Eun Heui Kim
Cerebral glucose metabolism differs according to future weight change
脑葡萄糖代谢根据未来体重变化而变化
- DOI:
10.1007/s11682-019-00180-x - 发表时间:
2019 - 期刊:
- 影响因子:3.2
- 作者:
Jeong Mi Kim;M. Jang;Eun Heui Kim;Mijin Kim;S. Choi;Keunyoung Kim;Kyoungjune Pak;Y. Jeon;Sang Soo Kim;B. Kim;Seong‐Jang Kim;I. Kim - 通讯作者:
I. Kim
Existence and stability of perturbed transonic shocks for compressible steady potential flows
- DOI:
10.1016/j.na.2007.07.058 - 发表时间:
2008-09 - 期刊:
- 影响因子:1.4
- 作者:
Eun Heui Kim - 通讯作者:
Eun Heui Kim
Singular Gierer–Meinhardt systems of elliptic boundary value problems
- DOI:
10.1016/j.jmaa.2004.10.039 - 发表时间:
2005-08 - 期刊:
- 影响因子:1.3
- 作者:
Eun Heui Kim - 通讯作者:
Eun Heui Kim
Eun Heui Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eun Heui Kim', 18)}}的其他基金
RUI: Nonlinear Free Boundary Problems
RUI:非线性自由边界问题
- 批准号:
0707694 - 财政年份:2007
- 资助金额:
$ 16.31万 - 项目类别:
Standard Grant
Nonlinear elliptic boundary value problems
非线性椭圆边值问题
- 批准号:
0103823 - 财政年份:2001
- 资助金额:
$ 16.31万 - 项目类别:
Standard Grant
Nonlinear elliptic boundary value problems
非线性椭圆边值问题
- 批准号:
0228854 - 财政年份:2001
- 资助金额:
$ 16.31万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
- 批准号:
2337740 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Continuing Grant
Interactions between learning and non-learning plasticity in the beadlet sea anenome Actinia equina: A multidimensional reaction norm approach.
珠状海葵海葵中学习和非学习可塑性之间的相互作用:一种多维反应规范方法。
- 批准号:
BB/Y002474/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
CRII: CSR: Enhancing Eventual Data Consistency in Multidimensional Scientific Computing through Lightweight In-Memory Distributed Ledger System.
CRII:CSR:通过轻量级内存分布式账本系统增强多维科学计算中的最终数据一致性。
- 批准号:
2348330 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Standard Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
- 批准号:
24K20849 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MERGE - Measuring what matters: Improving usability and accessibility of policy frameworks and indicators for multidimensional well-being through collaboration
MERGE - 衡量重要的事情:通过协作提高多维福祉政策框架和指标的可用性和可及性
- 批准号:
10092245 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
EU-Funded
A Study on the Multidimensional Evaluation of the Effectiveness and Equalization of Psychoeducation on Complex Trauma
复杂创伤心理教育有效性及均衡性多维评价研究
- 批准号:
23K02998 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New frontiers in reverse mathematics with the multidimensional perspective
多维视角逆向数学新领域
- 批准号:
23K03193 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multidimensional investigation of cellular dynamics and lineage relationships in the vertebrate neural tube
脊椎动物神经管细胞动力学和谱系关系的多维研究
- 批准号:
EP/X031225/1 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
Fellowship
ATD: Predictive Anomaly Detection for Spatio-Temporal Data with Multidimensional Persistence
ATD:具有多维持久性的时空数据的预测异常检测
- 批准号:
2220613 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
Standard Grant
Development of High-throughput Multidimensional Collision Induced Unfolding Technology
高通量多维碰撞诱导展开技术开发
- 批准号:
2304961 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
Continuing Grant














{{item.name}}会员




