Nonlinear elliptic boundary value problems

非线性椭圆边值问题

基本信息

  • 批准号:
    0103823
  • 负责人:
  • 金额:
    $ 6.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-15 至 2001-11-30
  • 项目状态:
    已结题

项目摘要

NSF Award Abstract - DMS-0103823Mathematical Sciences: Nonlinear Elliptic Boundary Value ProblemsAbstractDMS-0103823KeyfitzThe major focus of this project is to develop systematic theories to understand the solution structures of nonlinear elliptic boundary value problems arising from change-of-type systems in multidimensional conservation laws, and from experiments in morphogenesis and ecological systems. It is a distinctive feature of multidimensional conservation laws in self-similar coordinates that they change type, being hyperbolic far from the origin but of mixed type near the origin. Analysis of behavior near the origin gives rise to interesting open problems in elliptic partial differential equations, including nonlinear free boundary value problems, degenerate oblique boundary problems, and quasilinear degenerate elliptic systems. Such problems arise in many different combinations in the study of two-dimensional Riemann problems, including those for the compressible Euler equations of gas dynamics. This project also investigates a class of singular non-quasimonotone elliptic systems that arise in models of biological morphogenesis experiments and certain predator-prey interactions. Multidimensional conservation laws are mathematical models for fundamental processes in physics and engineering, such as high-speed flows and supersonic jets. While tools for numerical simulations of multidimensional conservation laws have been developed extensively, there is very little analytical theory available. It is our goal to establish parts of the needed theory and to investigate the structure of solutions for such problems. The results of the project will have application to a wide a variety of physical systems.
NSF奖摘要- DMS-0103823数学科学:非线性椭圆边值问题摘要DMS-0103823 Keyfitz本项目的主要重点是发展系统的理论,以了解多维守恒律中的变型系统以及形态发生和生态系统实验中产生的非线性椭圆边值问题的解结构。 自相似坐标系中的多维守恒律的一个显著特征是它们改变类型,远离原点是双曲型,但靠近原点是混合型。 分析原点附近的行为会引起椭圆型偏微分方程中有趣的开放问题,包括非线性自由边值问题,退化斜边界问题和拟线性退化椭圆型系统。 这样的问题出现在许多不同的组合在研究二维黎曼问题,包括那些可压缩的气体动力学欧拉方程。 本计画也研究一类奇异非拟单调椭圆型系统,其出现在生物形态发生实验与某些捕食者-食饵互动的模型中。 多维守恒定律是物理学和工程学中基本过程的数学模型,如高速流动和超音速射流。 虽然多维守恒律的数值模拟工具已经得到了广泛的发展,但很少有可用的分析理论。 我们的目标是建立所需的理论的一部分,并调查这些问题的解决方案的结构。 该项目的结果将应用于各种各样的物理系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eun Heui Kim其他文献

Thermal-image-based wildfire spread simulation using a linearized model of an advection–diffusion–reaction equation
使用平流扩散反应方程的线性模型进行基于热图像的野火蔓延模拟
Convergence of parallel multisplitting methods using ILU factorizations
Cerebral glucose metabolism differs according to future weight change
脑葡萄糖代谢根据未来体重变化而变化
  • DOI:
    10.1007/s11682-019-00180-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Jeong Mi Kim;M. Jang;Eun Heui Kim;Mijin Kim;S. Choi;Keunyoung Kim;Kyoungjune Pak;Y. Jeon;Sang Soo Kim;B. Kim;Seong‐Jang Kim;I. Kim
  • 通讯作者:
    I. Kim
Existence and stability of perturbed transonic shocks for compressible steady potential flows
Addition of nonalbumin proteinuria to albuminuria improves prediction of type 2 diabetic nephropathy progression
将非白蛋白尿添加到白蛋白尿中可以改善对 2 型糖尿病肾病进展的预测
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Jong Ho Kim;S. Oh;Eun Heui Kim;Min Jin Lee;Y. Jeon;B. Kim;Jin Mi Kim;Y. K. Kim;Sang Soo Kim;I. Kim
  • 通讯作者:
    I. Kim

Eun Heui Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eun Heui Kim', 18)}}的其他基金

RUI: Multidimensional Conservation Laws and Related Applications
RUI:多维守恒定律及相关应用
  • 批准号:
    1109202
  • 财政年份:
    2011
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
RUI: Nonlinear Free Boundary Problems
RUI:非线性自由边界问题
  • 批准号:
    0707694
  • 财政年份:
    2007
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Nonlinear elliptic boundary value problems
非线性椭圆边值问题
  • 批准号:
    0228854
  • 财政年份:
    2001
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant

相似海外基金

Study on the bifurcation structure of positive solutions for concave-convex mixed nonlinear elliptic boundary value problems with indefinite weights
不定权凹凸混合非线性椭圆边值问题正解的分岔结构研究
  • 批准号:
    15K04945
  • 财政年份:
    2015
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bifurcation analysis for nonlinear elliptic boundary value problems with combined nonlinearity of absorption and blowing up effects arising in population dynamics
群体动力学中吸收和爆炸效应组合非线性的非线性椭圆边值问题的分岔分析
  • 批准号:
    22540170
  • 财政年份:
    2010
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Systems of nonlinear elliptic equations and free boundary problems on manifolds
非线性椭圆方程组和流形上的自由边界问题
  • 批准号:
    0900864
  • 财政年份:
    2009
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Systems of nonlinear elliptic equations and free boundary problems on manifolds
非线性椭圆方程组和流形上的自由边界问题
  • 批准号:
    1027628
  • 财政年份:
    2009
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
  • 批准号:
    0901995
  • 财政年份:
    2008
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Study on nonlinear elliptic boundary value problems with Allee effects, arising in population dynamics
种群动态中具有 Allee 效应的非线性椭圆边值问题的研究
  • 批准号:
    19540192
  • 财政年份:
    2007
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
  • 批准号:
    0701016
  • 财政年份:
    2007
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Study on Positive Solutions of Nonlinear Elliptic Boundary Value Problems Arising in Population Dynamics
种群动力学中非线性椭圆边值问题的正解研究
  • 批准号:
    16540165
  • 财政年份:
    2004
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Boundary value problems for higher-order nonlinear ordinary differential equations
高阶非线性常微分方程的边值问题
  • 批准号:
    15340048
  • 财政年份:
    2003
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global solution structure and the stability of nonlocal nonlinear second order boundary value problems with definite integrals
非局部非线性二阶定积分边值问题的全局解结构与稳定性
  • 批准号:
    15540220
  • 财政年份:
    2003
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了